Skip to main content
Log in

Integer-valued moving average (INMA) process

  • Articles
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

A simple model for a stationary sequence of dependent integer-valued random variables {Xn} is given. The sequence to be called integer-valued moving average (INMA) process, is taken as the “survivals” of i.i.d. non-negative integervalued random variables. It is argued that the model’s structure reflects to some extent the mechanism generating real life data for many counting process and consequently it is useful for modelling such processes. Various properties for the special case in which {Xn} is Poisson INMA (1) process, such as the joint distribution, regression, time reversibility, along with the conditional and partial correlations, are discussed in details. Extension of the INMA of first order to higher order moving average is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integervalued autoregressive (INAR(1)) process J. Time Series Anal., 8, 261–275.

    Article  MATH  MathSciNet  Google Scholar 

  • Alzaid, A. A. and Al-Osh, M. A. (1988). First-order integervalued autoregressive (INAR(1)) process: distributional and regression properties. Statistica Neerlandica, to appear.

  • Alzaid, A. A. and Al-Osh, M. A. (1987). Integer-valued autoregressive of order P(INAR(p)) process. Technical Report No. STR 1407-20, Department of Statistics, King Saud University.

  • Cox, D. R. and Isham, V. (1980). Point Processes. Chapman and Hall, London.

    MATH  Google Scholar 

  • Gaver, D. P. and Lewis, P. A. W. (1980). First-order autoregressive gamma sequences and point processes. Adv. Appl. Prob., 12, 727–745.

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobs, P. A. and Lewis, P. A. W. (1977). A mixed autoregressive-moving average exponential sequence and point process (EARMA (1,1)). Adv. Appl. Prob., 9, 87–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobs, P. A. and Lewis, P. A. W. (1978a). Discrete time series generated by mixtures I: correlational and runs properties. J. R. Statist. Soc, B, 40, 94–105.

    MATH  MathSciNet  Google Scholar 

  • Jacobs, P. A. and Lewis, P. A. W. (1978b). Discrete time series generated by mixtures II: asymptotic properties. J. R. Statist. Soc. B, 40, 222–228.

    MATH  MathSciNet  Google Scholar 

  • Jacobs, P. A. and Lewis, P. A. W. (1983). Stationary discrete autoregressive-moving average time series generated by mixtures. J. Time Seris Analysis, 4, 18–36.

    MathSciNet  Google Scholar 

  • Lawrance, A. J. (1976). On conditional and partial correlation. Amer. Statistician, 30, (3), 146–149.

    Article  MATH  MathSciNet  Google Scholar 

  • Lawrance, A. J. (1980). Some autoregressive models for point processes in “Point Processes and Queueing Problems” (P. Bartfai and J. Tomko, eds.), 257–275. Colloquia Mathematica Societatis Janos Bolyai 24, Amsterdam: North Holland.

    Google Scholar 

  • Lawrance, A. J. and Lewis, P. A. W. (1977). An exponential moving-average sequence and point process (EMAI). J. Appl. Prob. 14, 98–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Lawrance, A. J. and Lewis, P. A. W. (1980). The exponential autoregressive moving average EARMA (p,q) process. J. R. Statist. Soc. B, 42, 150–161.

    MATH  MathSciNet  Google Scholar 

  • Lawrance, A. J. and Lewis, P. A. W. (1981). A new autoregressive time series model in exponential variables (NEAR(1)). Adv. Appl. Prob. 13, 826–845.

    Article  MATH  MathSciNet  Google Scholar 

  • Lawrance, A. J. and Lewis, P. A. W. (1986). Modelling and residual analysis of non-linear autoregressive time series in exponential variables (with discussion). J. R. Statist. Soc. B, 47, 165–202.

    MathSciNet  Google Scholar 

  • Luckus, E. (1970). Characteristic Functions. Griffin, London.

    Google Scholar 

  • McKenzie, E. (1986a). Autoregressive moving-average processes with negative binomial and geometric marginal distributions. Adv. Appl. Prob. 18, 679–705.

    Article  MATH  MathSciNet  Google Scholar 

  • McKenzie, E. (1986b). Some simple models for discrete time series in “Time Series Analysis in Water Resources” (K. Hipel ed.) AWRA monograph # 4.

  • Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Probab. 7, 893–899.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Osh, M., Alzaid, A.A. Integer-valued moving average (INMA) process. Statistical Papers 29, 281–300 (1988). https://doi.org/10.1007/BF02924535

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02924535

Key words

Navigation