Skip to main content
Log in

Relaxation and regularization of nonconvex variational problems

  • Published:
Rendiconti del Seminario Matematico e Fisico di Milano Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We are interested in variational problems of the form min ∝W(∇u) dx, withW nonconvex. The theory of relaxation allows one to calculate the minimum value, but it does not determine a well-defined “solution” since minimizing sequences are far from unique. A natural idea for determining a solution is regularization, i.e. the addition of a higher order term such as ε|∇∇u|2. But what is the behavior of the regularized solution in the limit as ε→0? Little is known in general.

Our recent work [19, 20, 21] discusses a particular problem of this type, namely min u y=±1 ∝∝u 2x +ε|u yy|dxdy with various boundary conditions. The present paper gives an expository overview of our methods and results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aviles and Y. Giga,A mathematical problem related to the physical theory of liquid crystals, in Proc. Centre Math. Anal., Australian Nat. Univ. (J. Hutchinson and L. Simon, eds.) 12 (1987) 1–16.

  2. J.M. Ball,A version of the fundamental theorem for Young measures, in Lecture Notes in Physics 344, M. Rascle et al. eds., Springer (1989) 207–215.

  3. J.M. Ball and R.D. James,Fine phase mixtures as minimizers of the energy, Arch. Rat. Mech. Anal. 100 (1987) 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.M. Ball and R.D. James,Proposed experimental tests of a theory of fine microstructure and the two- well problem, Phil. Trans. Roy. Soc. Lon. 338A (1992) 389–450.

    Article  Google Scholar 

  5. J. Carr, M.E. Gurtin and M. Slemrod,Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal. 86 (1984) 317–351.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Cellina,On minima of a functional of the gradient: necessary conditions, Nonlin. Anal.—Theory, Methods, and Applns. 20 (1993) 337–341.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Cellina,On minima of a functional of the gradient: sufficient conditions, Nonlin. Anal.—Theory, Methods, and Applns. 20 (1993) 343–347.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Chipot and S. Müller, in preparation.

  9. B. Dacorogna,Direct Methods in the Calculus of Variations, Springer, 1989.

  10. G. Dal Maso,An Introduction to Γ-Convergence, Birkhauser, 1993.

  11. I. Ekeland and R. Temam,Analyse Convexe et Problèmes Variationnels, Dunod, 1974.

  12. I. Fonseca,Phase transitions of elastic solid materials, Arch. Rat. Mech. Anal. 107 (1989) 195–223.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Friesecke,A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, preprint.

  14. M. Ortiz and G. Gioia,The morphology and folding patterns of buckling-driven thin-film blisters, preprint.

  15. B. Horovitz, G. Barsch and J. Krumhansl,Twin bands in martensites: statics and dynamics, Phys. Rev. B 43 (1991) 1021–1033.

    Article  Google Scholar 

  16. A. Hubert,Zur Theorie der Zweiphasigen Domänenstrukturen in Supraleitern und Ferromagneten, Phys. Status Solidi 24 (1967) 669–682.

    Article  Google Scholar 

  17. R.V. Kohn,The relaxation of a double-well energy, Continuum Mech. Thermodyn. 3 (1991) 193–236.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.V. Kohn and J. Lu, in preparation.

  19. R.V. Kohn and S. Müller,Branching of twins near an austenite-twinned-martensite interface, Phil. Mag. A 66 (1992) 697–715.

    Article  Google Scholar 

  20. R.V. Kohn and S. Müller,Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math., to appear.

  21. R.V. Kohn and S. Müller, in preparation.

  22. R.V. Kohn and G. Strang,Optimal design and relaxation of variational problems I–III, Comm. Pure Appl. Math. 34 (1987) 113–137, 139–182, 353–377.

    MathSciNet  Google Scholar 

  23. R.V. Kohn and M. Vogelius,Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math. 40 (1987) 745–777.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Müller,Singular perturbation as a selection criterion for periodic minimizing sequences, Calc. of Variations and PDE 1 (1993) 169–204.

    Article  MATH  Google Scholar 

  25. P. Swart and P. Holmes,Energy minimization and the formation of microstructure in dynamic antiplane shear, Arch. Rat. Mech. Anal. 121 (1992) 37–85.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Tartar,Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, R. Knops, ed., Pitman (1978) 136–212.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to prof. L. Amerio

Conferenza tenuta da Robert Kohn il 28 settembre 1992

Partially supported by NSF grant DMS-9102829, AFOSRR grant 90-0090, and ARO contract DAAL03-92-G-0011.

Partially supported by NSF grant DMS-9002679 and by NSF grant DMS-9002679 and by SFB at the University of Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, R.V., Müller, S. Relaxation and regularization of nonconvex variational problems. Seminario Mat. e. Fis. di Milano 62, 89–113 (1992). https://doi.org/10.1007/BF02925437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925437

Keywords

Navigation