Skip to main content
Log in

Biodegradable plastics from renewable sources

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal C.M., Ray R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering.J.Biomed.Mater.Res. 55, 141–150 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Anderson A.J., Dawes E.A.: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.Microbiol.Rev. 54, 450–472 (1990).

    PubMed  CAS  Google Scholar 

  • Anonymous: Technology Foresight. Environment-Felated Issues. Report OECD, DSTI/STP/TIP (98) 110, Paris 1998.

  • Anonymous: Current Situation and Strategies of Chemical Companies on Functional Plastics. Report E21-9. Dia Research Martech, New York 2000a.

  • Anonymous: Biological Treatment of Biodegradable Waste — 1st draft. Working Document EC-DG.ENV.E3, Brussels 2000b.

  • Anonymous: Annual Report 2000. Monsanto Company, St. Louis (USA) 2000c.

  • Anonymous: On a Dextran Preparation, Produced using Leuconostoc mesenteroides, Saccharomyces cerevisiae and Lactobacillus sp., as a Novel Food Ingredient in Bakery Products. Opinion of the Scientific Committee on Food. Final Document EC-CS/NF/DOS/7/ADD, 3rd (final) version. Brussels 2000d.

  • Aquino A.C.M.M., Jorge J.A., Terenzi H.F., Polizeli M.L.T.M.: Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungusScytalidium thermophilum.Folia Microbiol. 46, 11–16 (2001).

    Article  CAS  Google Scholar 

  • Augustín J.: Glucans as modulating polysaccharides, their characteristics and isolation from microbiological sources.Biologia 53, 277–282 (1998).

    Google Scholar 

  • Averous L., Fringant C.: Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems.Polym.Eng.Sci. 41, 727–734 (2001).

    Article  CAS  Google Scholar 

  • Banik R.M., Kanari B., Upadhyay S.N.: Exopolysaccharide of the gellan family: prospects and potential.World J.Microbiol.Biotechnol. 16, 407–414 (2000).

    Article  CAS  Google Scholar 

  • Bastioli C.: Properties and applications of Mater-Bi starch-based materials.Polym.Degradat.Stabil. 59 (special issue), 263–272 (1998a).

    Article  CAS  Google Scholar 

  • Bastioli C.: Biodegradable materials — present situation and future perspectives.Macromol.Symp. 135, 193–204 (1998b).

    CAS  Google Scholar 

  • Bastioli C.: Global status of the production of biobased packaging materials.Starch-Starke 53, 351–355 (2001).

    Article  CAS  Google Scholar 

  • Bastioli C., Ceruttia.,Guanella I., Romano G.C., Tosin M.: Physical state and biodegradation behavior of starch-polycaprolactone systeme.J.Environ.Polym.Degradat. 3, 81–95 (1995a).

    Article  CAS  Google Scholar 

  • Bastioli C., Degliinnocenti F., Guanella I., Romano G.: Compostable films of Mater-Bi z-grades.J.Macromol.Sci.Pure Appl. Chem. A32, 839–842 (1995b).

    CAS  Google Scholar 

  • Bentley P.A., Kroutil W., Littlechild J.A., Roberts S.M.: Preparation of polyamino acid catalysts for use in Julia asymmetric epoxidation.Chirality 9, 198–202 (1997).

    Article  CAS  Google Scholar 

  • Bledzki A.K., Reihmane S., Gassan J.: Properties and modification methods for vegetable fibers for natural fiber composites.J.Appl. Polym.Sci. 59, 1329–1336 (1996).

    Article  CAS  Google Scholar 

  • Boyer J.N.: Aerobic and anaerobic degradation and mineralization of14C-chitin by water column and sediment inocula of the York-river-estuary.Appl.Environ.Microbiol. 60, 174–179 (1994).

    PubMed  CAS  Google Scholar 

  • Breslin V.T., Swanson R.L.: Deterioration of starch-plastic composites in the environment.J.Air Waste Manag.Assoc. 43, 325–335 (1993).

    CAS  Google Scholar 

  • Buchanan C.M., Gardner R.M., Komarek R.J.: Aerobic biodegradation of cellulose acetate.J.Appl.Polym.Sci. 47, 1709–1719 (1993).

    Article  CAS  Google Scholar 

  • Burgesscassler A., Imam S.H., Gould J.M.: High-molecular-weight amylase activities from bacteria degrading starch-plastic films.Appl.Environ.Microbiol. 57, 612–614 (1991).

    CAS  Google Scholar 

  • Byrom D.: Polymer synthesis by microorganisms — technology and economics.Trends Biotechnol. 5, 246–250 (1987).

    Article  CAS  Google Scholar 

  • Cahill E., Scapolo F., Ducatel K., Münker T., Aguado M., Eder P., Leone F., Hernandez H.:The Futures Project Technology Map. EC TECS (Report EUR 19031EN), Brussels 1999.

  • Calandrelli L., Immirzi B., Malinconico M., Volpe M.G., Oliva A., Della Ragione F.: Preparation and characterization of composites based on biodegradable polymers for “in vivo” application.Polymer 41, 8027–8033 (2000).

    Article  CAS  Google Scholar 

  • Callum A., Hill S.: Wood plastic composites: strategies for compatibilizing the phases.J.Inst.Wood Sci. 15, 140–146 (2000).

    Google Scholar 

  • Calmon-Decriaud A., Bellon-Maurel V., Silvestre F.: Standard methods for testing the aerobic biodegradation of polymeric materials. Review and perspectives.Adv.Polym.Sci. 135, 207–226 (1998).

    Article  CAS  Google Scholar 

  • Chand N., Tiwary R.K., Rohatgi P.K.: Resource structure properties of natural cellulosic fibers — an annotated bibliography.J.Mater.Sci. 23, 381–387 (1988).

    Article  CAS  Google Scholar 

  • Cho S., Dreher M.L. (Eds):Handbook of Dietary Fiber. Food Science and Technology, Vol. 113. Marcel Dekker, New York 2001.

    Google Scholar 

  • Choi J.I., Lee S.Y.: Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation.Bioproc.Eng. 17, 335–342 (1997).

    Article  CAS  Google Scholar 

  • Clarkson W.W., Xiao W.: Bench-scale anaerobic bioconversion of newsprint and office paper.Water Sci.Technol. 41, 93–100 (2000).

    PubMed  CAS  Google Scholar 

  • Crescenzi V.: Microbial polysaccharides of applied interest — ongoing research activities in Europe.Biotechnol.Progr. 11, 251–259 (1995).

    Article  CAS  Google Scholar 

  • De Graaf R.A., Janssen L.: The production of a new partially biodegradable starch plastic by reactive extrusion.Polym.Eng.Sci. 40, 2086–2094 (2000).

    Article  Google Scholar 

  • Drumright R.E., Gruber P.R., Henton D.E.: Polylactic acid technology.Adv.Mater. 12, 1841–1846 (2000).

    Article  CAS  Google Scholar 

  • Du G.C.C., Chen J., Yu J., Lun S.Y.: Feeding strategy of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) withRalstonia eutropha.Biochem.Eng.J. 8, 103–110 (2001a).

    Article  CAS  Google Scholar 

  • Du G.C.C., Chen J., Yu J., Lun S.Y.: Centinuous production of poly-3-hydroxybutyrate byRalstonia eutropha in a two-stage culture system.J.Biotechnol. 88, 59–65 (2001b).

    Article  PubMed  CAS  Google Scholar 

  • Duquesne E., Rutot D., Degee P., Dubois P.: Synthesis and characterization of compatibilized poly(ε-caprolactone)/granular starch composites.Macromol.Symp. 175, 33–43 (2001).

    Article  CAS  Google Scholar 

  • Edgar K.J., Buchanan C.M., Debenham J.S., Rundquist P.A., Seiler B.D., Shelton M.C., Tindall D.: Advances in cellulose ester performance and application.Progr.Polym.Sci. 26, 1605–1688 (2001).

    Article  CAS  Google Scholar 

  • Felse P.A., Panda T.: Production of microbial chitinases — a revisit.Bioproc.Eng. 23, 127–134 (2000).

    Article  CAS  Google Scholar 

  • Finch C.A. (Ed.):Polyvinyl Alcohol — Developments. J. Wiley, New York 1992.

    Google Scholar 

  • Flach J., Pilet P.E., Jolles P.: What’s new in chitinase research?Experientia 48, 701–716 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Fringant C., Rinaudo M., Gontard N., Guilbert S., Derradji H.: A biogradable starch based coating to waterproof hydrophilic materials.Starch-Starke 50, 292–296 (1998).

    Article  CAS  Google Scholar 

  • Gartiser S., Wallrabenstein M., Stiene G.: Assessment of several test methods for the determination of the anaerobic biodegradability of polymers.J.Environ.Polym.Degrad. 6, 159–173 (1998).

    Article  CAS  Google Scholar 

  • George E.R., Sullivan T.M., Park E.H.: Thermoplastic starch blends with a poly(ethylene-co-vinyl alcohol) — processability and physical properties.Polym.Eng.Sci. 34, 17–23 (1994).

    Article  CAS  Google Scholar 

  • George J., Sreekala M.S., Thomas S.: A review on interface modification and characterization of natural fiber reinforced plastic composites.Polym.Eng.Sci. 41, 1471–1485 (2001).

    Article  CAS  Google Scholar 

  • Gerngross T.U., Slater S.C.: Can biotechnology move us toward a sustainable society?Nature Biotechnol. 17, 541–544 (1999).

    Article  CAS  Google Scholar 

  • Giavasis I., Harvey L.M., McNeil B.: Gellan gum.Crit.Rev.Biotechnol. 20, 177–211 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Glenn G.M., Hsu J.: Compression-formed starch-based plastic.Ind.Crops Prod. 7, 37–44 (1997).

    Article  CAS  Google Scholar 

  • Glenn G.M., Orts W.J.: Properties of starch-based foam formed by compression/explosion processing.Ind.Crops Prod. 13, 135–143 (2001).

    Article  CAS  Google Scholar 

  • Glenn G.M., Orts W.J., Nobes G.A.R.: Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process.Ind.Crops Prod. 14, 201–212 (2001).

    Article  CAS  Google Scholar 

  • Gomes E., Iembo T., da Silva R.: Production, characterization and properties of polysaccharide depolymerizing enzymes from a strain ofCurvularia inaequalis.Folia Microbiol. 46, 303–308 (2001).

    Article  CAS  Google Scholar 

  • Gooday G.W.: The ecology of chitin degradation.Adv.Microb.Ecol. 11, 387–430 (1990).

    CAS  Google Scholar 

  • Goosen M.F.A. (Ed.):Applications of Chitin and Chitosan. Technomic, Lancaster 1997.

    Google Scholar 

  • Gough J.E., Christian P., Scotchford C.A., Rudd C.D., Jones I.A.: Synthesis, degradation, andin vitro cell responses of sodium phosphate glasses for craniofacial bone repair.J.Biomed.Mat.Res. 59, 481–489 (2002).

    Article  CAS  Google Scholar 

  • Gross R.A., Kalra B.: Biodegradable polymers for the environment.Science 297, 803–807 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hanzlíková A., Jandera A.: Chitinase and changes of microbial community in soil.Folia Microbiol. 38, 159–160 (1993).

    Article  Google Scholar 

  • Hashimoto M., Ikegami T., Seino S., Ohuchi N., Fukada H., Sugiyama J., Shirakawa M., Watanabe T.: Expression and characterization of the chitin-binding domain of chitinase A1 fromBacillus circulans WL-12.J.Bacteriol. 182, 3045–3054 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto W., Momma K., Miki H., Mishima Y., Kobayashi E., Miyake O., Kawai S., Nankai H., Mikami B., Murata K.: Enzymatic and genetic bases on assimilation, depolymerization, and transport of heteropolysaccharides in bacteria.J.Biosci.Bioeng. 87, 123–136 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hattori K., Tomita N., Yoshikawa T., Takakura Y.: Prospects for bone fixation — development of new cerclage fixation techniques.Mat.Sci.Eng. 17, 27–32 (2001).

    Article  Google Scholar 

  • Hebeish A., Elalfy E., Bayazeed A.: Synthesis of vinyl polymer-starch composites to serve as size base materials.Starch-Starke 40, 191–196 (1988).

    Article  CAS  Google Scholar 

  • Hebeish A., Elzairy M.R., Elrafie M.H., Higazy A., Elsisy F.: Poly(acrylic acid)-starch composite as a substitute for sodium alginate in printing cotton fabrics with reactive dyes.Starch-Starke 43, 98–102 (1991).

    Article  CAS  Google Scholar 

  • Hebeish A., Elrafie M.H., Higazy A., Ramadan M.A.: Poly(acrylic acid)-starch composites — a key for improving sizability and desizability of starch from cotton textiles.Starch-Starke 44, 101–107 (1992).

    Article  CAS  Google Scholar 

  • Hebeish A., Elrafie M.H., Higazy A., Ramadan M.: Synthesis, characterization and properties of polyacrylamide-starch composites.Starch-Starke 48, 175–179 (1996).

    Article  CAS  Google Scholar 

  • Hebeish A., Waly A., Elrafie M.H., El Sheikh M.A.: Synthesis and characterization of new polymeric materials based on water soluble starch composites.Abstr.Am.Chem.Soc. 213, 32 (1997).

    Google Scholar 

  • Herrmann A.S., Nickel J., Riedel U.: Construction materials based upon biologically renewable resources — from components to finished parts.Polyin.Degrad.Stabil. 59, 251–261 (1998).

    Article  CAS  Google Scholar 

  • Holan Z., Beran K., Miler I.: Preparation of zymosan from yeast-cell walls.Folia Microbiol. 25, 501–504 (1980).

    Article  CAS  Google Scholar 

  • Huang M.H., Shih Y.P., Liu S.M.: Biodegradation of polyvinyl alcohol byPhanerochaete chrysosporium after pretreatment with Fenton’s reagent.J.Environ.Sci.Health 37, 29–41 (2002).

    Article  Google Scholar 

  • Hutmacher D.W., Goh J.C., Teoh S.H.: An introduction to biodegradable materials for tissue engineering applications.Ann.Acad.Med.Singapore 30, 183–191 (2001).

    PubMed  CAS  Google Scholar 

  • Imam S.H., Gould J.M., Gordon S.H., Kinney M.P., Ramsey A.M., Tosteson T.R.: Fate of starch-containing plastic films exposed in aquatic habitats.Curr.Microbiol. 25, 1–8 (1992).

    Article  CAS  Google Scholar 

  • Imam S.H., Gordon S.H., Thompson A.R., Harryokuru R.E., Greene R.V.: The use of CP/MAS13C0NMR for evaluating starch degradation in injection-molded starch-plastic composites.Biotechnol.Techn. 7, 791–794 (1993).

    Article  CAS  Google Scholar 

  • Ishiaku U.S., Pang K.W., Lee W.S., Ishak Z.A.M.: Mechanical properties and enzymic degradation of thermoplastic and granular sago starch-filled poly(ε-caprolactone).Europ.Polym.J. 38, 393–401 (2002).

    Article  CAS  Google Scholar 

  • Itoh Y., Kawase T., Nikaidou N., Fukada H., Mitsutomi M., Watanabe T., Itoh Y.: Functional analysis of the chitin-binding domain of a family 19 chitinase fromStreptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function.Biosci.Biotechnol.Biochem. 66, 1084–1092 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek D., Schirmer A., Schlegel H.G: Biodegradation of polyhydroxy-alkanoic acids.Appl.Microbiol.Biotechnol. 46, 451–463 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Jenkins D.W., Hudson S.M.: Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers.Chem.Rev. 101, 3245–3273 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Jeon Y.J., Shahidi F., Kim S.K.: Preparation of chitin and chitosan oligomers and their applications in physiological functional foods.Food Rev.Internat. 16, 159–176 (2000).

    Article  CAS  Google Scholar 

  • Jeong Y.I., Nah J.W., Na H.K., Na K., Kim I.S., Cho C.S., Kim S.H.: Self-assembling nanospheres of hydrophobized pullulans in water.Drug Dev.Ind.Pharm. 25, 917–927 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Jian Y., Yingtao Si B., Wan K.R., Wong C.: Kinetic modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates byRalstonia eutropha.Proc.Biochem. 37, 731–738 (2002).

    Article  Google Scholar 

  • Kanzawa Y., Harada T., Koreda A., Harada A.: Curdlan gel formed by neutralizing its alkaline solution.Agric.Biol.Chem. 51, 1839–1843 (1987).

    CAS  Google Scholar 

  • Karinen P., Bergelin R.: β-Glucan-enriched alimentary fiber. US Pat. 5 183 677 (1993).

  • Karjomaa S., Suortti T., Lempiainen R., Selin J.F., Itavaara M.: Microbial degradation of poly-(l-lactic acid) oligomers.Polym.Degrad.Stabil. 59, 333–336 (1998).

    Article  CAS  Google Scholar 

  • Karthikeyan R.S., Rakshit S.K., Baradarajan A.: Optimization of batch fermentation conditions for dextran production.Bioproc.Eng. 15, 247–251 (1996).

    Article  CAS  Google Scholar 

  • Kasapis S.: Phase separated, glassy and rubbery states of gellan gum in mixtures with food biopolymers and co-solutes.Internat.J.Food Sci.Technol. 30, 693–710 (1995).

    CAS  Google Scholar 

  • Katoh T., Yuguchi D., Yoshii H., Shi H.D., Shimizu K.: Dynamics and modeling on fermentative production of poly (β-hydroxy-butyric acid) from sugarsvia lactate by a mixed culture ofLactobacillus delbrueckii andAlcaligenes eutrophus.J.Biotechnol. 67, 113–134 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kawai F.: Breakdown of plastics and polymers by microorganisms.Adv.Biochem.Eng.Biotechnol. 52, 151–194 (1995).

    PubMed  CAS  Google Scholar 

  • Ke T.Y., Sun X.Z.: Physical properties of poly(lactic acid) and starch composites with various blending ratios.Cereal Chem. 77, 761–768 (2000).

    Article  CAS  Google Scholar 

  • Kennedy E.M., Sundquist D.:Biopolymers: Making Materials Nature’s Way. US Congress. Office of Technology Assessment (ISBN 0-16-042098-9), Washington (DC) 1993.

  • Kimura T., Ihara N., Ishida Y., Saito Y., Shimizu N.: Hydrolysis characteristics of biodegradable plastic (poly-lactic acid).J.Japan.Soc.Food Sci.Technol. 49, 598–604 (2002).

    CAS  Google Scholar 

  • Kofroňová O., Ptáčkova L., Chaloupka J.: Poly(3-hydroxybutyrate) granules ofBacillus megaterium.Folia Microbiol. 39, 166–167 (1994).

    Article  Google Scholar 

  • Kolarova N., Augustín J.: Production of polysaccharide hydrolases in the genusRhizopus.Folia Microbiol. 46, 223–226 (2001).

    Article  CAS  Google Scholar 

  • Kolstad J.J.: Crystallization kinetics of poly(l-lactide-co-meso-lactide).J.Appl.Polym.Sci. 62, 1079–1091 (1996).

    Article  CAS  Google Scholar 

  • Kopečný J., Hodrová B.: Chitinolytic enzymes produced by ovine rumen bacteria.Folia Microbiol. 45, 465–468 (2000).

    Article  Google Scholar 

  • Kumar M.N.V.R.: A review of chitin and chitosan applications.React.Funct.Polym. 46, 1–27 (2000).

    Article  CAS  Google Scholar 

  • Kumar M.N.V.R., Kumar N., Domb A.J., Arora M.: Pharmaceutical polymeric controlled drug delivery systems.Adv.Polym.Sci. 160, 45–117 (2002).

    Article  CAS  Google Scholar 

  • Kwon S., Yoo I.K., Lee W.G., Chang H.N., Chang Y.K.: High-rate continuous production of lactic acid byLactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor.Biotechnol.Bioeng. 73, 25–34 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Lednická D., Mergaert J., Cnockaert M.C., Swings J.: Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres.Syst.Appl.Microbiol. 23, 292–299 (2000).

    PubMed  Google Scholar 

  • Lee S.Y.: Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria.Trends Biotechnol. 14, 431–438 (1996).

    Article  CAS  Google Scholar 

  • Lee J.H., Park Y.H.: Optimal production of curdlan byAgrobacterium sp. with feedback inferential control of optimal pH profile.Biotechnol.Lett. 23, 525–530 (2001).

    Article  CAS  Google Scholar 

  • Lenz R.W.:JTEC Monograph on Biodegradable Polymers and Plastics in Japan, PB95-199071. National Technical Information Service of the US Department of Commerce, Sprinfield (USA) 1995.

    Google Scholar 

  • Leschine S.B.: Cellulose degradation in anaerobic environments.Ann.Rev.Microbiol. 49, 399–426 (1995).

    Article  CAS  Google Scholar 

  • Lindblad M.S., Liu Y., Albertson A.C., Ranucci E., Karlson S.: Polymers from renewable resources.Adv.Polym.Sci. 157, 139–161 (2002).

    Article  CAS  Google Scholar 

  • Lodha P., Netravali A.N.: Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber.J.Mat.Sci. 37, 3657–3665 (2002).

    Article  CAS  Google Scholar 

  • Lopezllorca L.V., Valiente M.F.C.: Study of biodegradation of starch-plastic films in soil using scanning electron microscopy.Micron 24, 457–463 (1993).

    Article  CAS  Google Scholar 

  • Lorcks J.: Properties and applications of compostable starch-based plastic material.Polym.Degrad.Stabil. 59 (special issue), 145–152 (1998).

    Article  Google Scholar 

  • Lunt J.: Large-scale production, properties and commercial applications of polylactic acid polymers.Polym.Degradat.Stabil. 59 (special issue), 245–249 (1998).

    Article  Google Scholar 

  • Manna B., Gambhir A., Ghosh P.: Production and rheological characteristics of the microbial polysaccharide gellan.Lett.Appl.Microbiol. 23, 141–145 (1996).

    CAS  Google Scholar 

  • Mark H.F., Stafford W.G. (Eds):Collected Papers of Wallace Hume Carothers on High Polymeric Substances. Interscience, New York 1940.

    Google Scholar 

  • Martin O., Schwach E., Averous L., Couturier Y.: Properties of biodegradable multilayer films based on plasticized wheat starch.Starch-Starke 53, 372–380 (2001).

    Article  CAS  Google Scholar 

  • Melzoch K., Votruba J., Schwippel J., Rychtera M., Hábová V.: Lactic acid production in a continuous culture using lignocellulosic hydrolysate as a substrate. Identification of a physiological model.Folia Microbiol. 41, 211–215 (1996).

    Article  CAS  Google Scholar 

  • Miladinov V.D., Hanna M.A.: Temperatures and ethanol effects on the properties of extruded modified starch.Ind.Crops Prod. 13, 21–28 (2001).

    Article  CAS  Google Scholar 

  • Mohanty A.K., Misra M., Hinrichsen G.: Biofibres, biodegradable polymers and biocomposites: an overview.Macromol.Mater.Engin. 276, 1–24 (2000).

    Article  Google Scholar 

  • Murano E.: Natural gelling polysaccharides: indispensable partners in bioencapsulation technology.Minerva Biotecnol. 12, 213–222 (2000).

    Google Scholar 

  • Muzzarelli R.A.A., Mattioli-Belmonte M., Miliani M., Muzzarelli C., Gabbanelli F., Biagini G.:In vivo andin vitro biodegradation of oxychitin-chitosan and oxypullulan-chitosan complexes.Carbohydr.Polym. 48, 15–21 (2002).

    Article  CAS  Google Scholar 

  • Muzzarelli R.A.A., Peter M.G. (Eds):Chitin Handbook. Atec, Grottammare (Italy) 1997.

    Google Scholar 

  • Nakata M., Kawaguchi T., Kodaky Y., Kono A.: Characterization of curdlan in aqueous sodium hydroxide.Polym.Sci. 39, 1475–1481 (1998).

    CAS  Google Scholar 

  • Nfiura N.N., Ohno N., Adachi Y., Yadomae T.: Characterization of sodium hypochlorite degradation of β-glucan in relation to its metabolismin vivo.Chem.Pharm.Bull.(Japan) 44, 2137–2141 (1996).

    Google Scholar 

  • Nitz H., Semke H., Landers R., Mulhaupt R.: Reactive extrusion of polycaprolactone compounds containing wood flour and lignin.J.Appl.Polym.Sci. 81, 1972–1984 (2001).

    Article  CAS  Google Scholar 

  • Okada M.: Chemical syntheses of biodegradable polymers.Progr.Polym.Sci. 27, 87–133 (2002).

    Article  CAS  Google Scholar 

  • Osumi M.S.: The ultrastructure of yeast: cell wall structure and formation.Micron 29, 207–233 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Otaigbe J.U., Adams D.O.: Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on water absorption and mechanical properties.J.Environ.Polym.Degrad. 5, 199–208 (1997).

    CAS  Google Scholar 

  • Otaigbe J.U., Goel H., Babcock T., Jane J.: Processability and properties of biodegradable plastics made from agricultural biopolymers.J.Elastomers Plastics 31, 56–71 (1999).

    CAS  Google Scholar 

  • Paetau I., Chen C.Z., Jane J.: Biodegradable plastic made from soybean products. Part I. Effect of preparation and processing on mechanical properties and water absorption.Ind.Eng.Chem.Res. 33, 1821–1827 (1994a).

    Article  CAS  Google Scholar 

  • Paetau I., Chen C.Z., Jane J.: Biodegradable plastic made from soybean products. Part II. Effect of cross-linking and incorporation of cellulose on the mechanical properties and water absorption.J.Environ.Biodegrad.Polym. 2, 211–217 (1994b).

    Article  CAS  Google Scholar 

  • Pagga U., Beimborn D.B., Boelens J., De-Wilde B.: Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test.Chemosphere 31, 4475–4487 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Pagga U., Schafer A., Muller R.J., Pantke M.: Determination of the aerobic biodegradability of polymeric material in aquatic batch tests.Chemosphere 42, 319–331 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Pal S., Manna A., Paul A.K.: Nutritional and cultural conditions for production of poly-3-hydroxybutyric acid byAzotobacter chroococcum.Folia Microbiol. 43, 177–181 (1998).

    Article  CAS  Google Scholar 

  • Park S.K., Hettiarachchy N.S.: Physical and mechanical properties of soy protein-based plastic foams.J.Am.Oil Chem.Soc. 76, 1201–1205 (1999).

    Article  CAS  Google Scholar 

  • Park H., Park K.: Hydrogels in bioapplications, pp. 2–10 inHydrogels and Biodegradable Polymers for Bioapplications. ACS Symp. Ser. 627 (1996).

  • Park E.H., George E.R., Flammino A.: Thermoplastic starch blends with polyvinyl alcohol — processability, physical properties, and biodegradability.Abstr.Pap.Am.Oil Chem.Soc. 206, 76 (1993).

    Google Scholar 

  • Park S.K., Hettiarachchy N.S., Were L.: Degradation behavior of soy protein-wheat gluten films in simulated soil conditions.J.Agric.Food Chem. 48, 3027–3031 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Parshad J., Suneja S., Kukreja K., Lakshminarayana K.: Poly-3-hydroxybutyrate production byAzotobacter chroococcum.Folia Microbiol. 46, 315–320 (2001).

    Article  CAS  Google Scholar 

  • Poirier Y.: Production of new polymeric compounds in plants.Curr.Opin.Biotechnol. 10, 181–185 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y.: Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism.Progr.Lipids Res. 41, 131–155 (2002).

    Article  CAS  Google Scholar 

  • Pollock T.J.: Gellan-related polysaccharides and the genusSphingomonas.J.Gen.Microbiol. 139, 1939–1945 (1993).

    CAS  Google Scholar 

  • Potter R.C., Fisher P.A., Hash S., Kirk R., Neidt J.D.: Method for concentrating β-glucan. US Pat. 6 323 338 (1999).

  • Poutanen K., Forssell P.: Modification of starch properties with plasticizers.Trends Polym.Sci. 4, 128–132 (1996).

    CAS  Google Scholar 

  • Ramakrishna S., Mazer J., Wintermantel E., Leong K.W.: Biomedical application of polymer composite materials: a review.Composite Sci.Technol. 61, 1189–1224 (2001).

    Article  CAS  Google Scholar 

  • Rao M.S., Munoz J.H., Stevens W.F.: Critical factors in chitin production by fermentation of shrimp biowaste.Appl.Microbiol. Biotechnol. 54, 808–813 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Rathke T.D., Hudson S.M.: Review of chitin and chitosan as fiber and film formers.J.Macromol.Sci. C34, 375–437 (1994).

    CAS  Google Scholar 

  • Rhim J.W., Weller C.L.: Properties of formaldehyde adsorbed soy protein isolate films.Food Sci.Biotechnol. 9, 228–233 (2000).

    Google Scholar 

  • Riedel U., Nickel J.: Structural materials from renewable resources (biocomposites).Materialwiss.Werkstofftech. 32, 493–498 (2001).

    Article  CAS  Google Scholar 

  • Robyt F.:Essential of Carbohydrate Chemistry. Springer-Verlag, Berlin 1998.

    Google Scholar 

  • Roy S., Leclerck P., Auger F., Soucy G., Moresoli C., Côté L., Potvin D., Beaulieu C., Brzezinski R.: A novel two-phase composting process using shrimp shells as an amendment to partly composted biomass.Compost Sci.Util. 5, 52–64 (1997).

    Google Scholar 

  • Sakai K., Yamauchi T., Nakasu F., Ohe T.: Biodegradation of cellulose acetate byNeisseria sicca.Biosci.Biotechnol.Biochem. 60, 1617–1622 (1996).

    PubMed  CAS  Google Scholar 

  • Salyers A.A., Reeves A., Delia J.: Solving the problem of how to eat something as big as yourself: diverse bacterial strategies for degrading polysaccharides.J.Ind.Microbiol.Biotechnol. 17, 470–476 (1996).

    Article  CAS  Google Scholar 

  • Sanchez J.G., Tsuchii A., Tokiwa Y.: Degradation of polycaprolactone at 50 °C by a thermotolerantAspergillus sp.Biotechnol.Lett. 22, 849–853 (2000).

    Article  CAS  Google Scholar 

  • Schlechter M.:Biodegradable Polymer (Report P-175). Business Communications Company, Norwalk (USA) 2001.

    Google Scholar 

  • Schrempe H.: Recognition and degradation of chitin by streptomycetes.Antonie van Leeuwenhoek 79, 285–289 (2001).

    Article  Google Scholar 

  • Schroter E.: Nature from start to finish.Kunststoffe-Plast Europe 88, 892–893 (1998).

    Google Scholar 

  • Schwarz W.H.: The cellulosome and cellulose degradation by anaerobic bacteria.Appl.Microbiol.Biotechnol. 56, 634–649 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Seviour R.J., Stasinopoulos S.J., Auer D.P.F., Gibbs P.A.: Production of pullulan and other exopolysaccharides by filamentous fungi.Crit.Rev.Biotechnol. 12, 279–298 (1992).

    Article  CAS  Google Scholar 

  • Shen Y.Q., Sun W.L., Zhu K.J., Shen Z.Q.: Regulation of biodegradability and drug release behavior of aliphatic polyesters by blending.J.Biomed.Mater.Res. 50, 528–535 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Shih F.F.: Edible films from rice protein concentrate and pullulan.Cereal Chem. 73, 406–409 (1996).

    CAS  Google Scholar 

  • Shimao M.: Biodegradation of plastics.Curr.Opin.Biotechnol. 12, 242–247 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Shin C.H., Kim Y.J., Kim B.S., Shin B.Y.: Mechanical properties and biodegradability of PCL/TPS blends.Polymer-Korea 24, 48–57 (2000).

    CAS  Google Scholar 

  • Shiraishi N., Yoshioka M.: Biodegradable plastics from cellulose.Mol.Cryst.Liq.Cryst. 353, 59–73 (2000).

    Article  Google Scholar 

  • Shogren R.L., Lawton J.W., Doane W.M., Tiefenbacher K.F.: Structure and morphology of baked starch flaks.Polymer 39, 6649–6655 (1998).

    Article  CAS  Google Scholar 

  • Simon J., Muller H.P., Koch R., Muller V.: Thermoplastic and biodegradable polymers of celulose.Polym.Degrad.Stabil. 59, 107–115 (1998).

    Article  CAS  Google Scholar 

  • Šimůnek J., Hodrová B., Bartoňová H., Kopečný J.: Chitinolytic bacteria of the mammal digestive tract.Folia Microbiol. 46, 76–78 (2001).

    Article  Google Scholar 

  • Šimůnek J., Kopečný J., Hodrová B., Bartoňová H.: Identification and characterization ofClostridium paraputrificum, a chitinolytic bacterium of human digestive tract.Folia Microbiol. 47, 559–564 (2002).

    Article  Google Scholar 

  • Singla A.K., Chawla M.: Chitosan: some pharmaceutical and biological aspects — an update.J.Pharm.Pharmacol. 53, 1047–1067 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Spence K.E., Allen A.L., Wang S., Jane J.: Soil and marine biodegradation of protein-starch plastics.Am.Chem.Soc.Symp.Ser. 627, 149–158 (1996).

    CAS  Google Scholar 

  • Spicer E.J.F., Goldenthal E.I., Ikeda T.: A toxicological assssment of curdlan.Food Chem.Toxicol. 37, 455–479 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A., de Baets S., Vandamme E.J. (Eds):Biopolymers. Vol. 6. Polysaccharides from Eukaryote. Wiley-VCH, Berlin 2002.

    Google Scholar 

  • Struszczyk M.H.: Chitin and chitosan — part I. Properties and production.Polimery-W 47, 316–325 (2002a).

    CAS  Google Scholar 

  • Struszczyk M.H.: Chitin and chitosan — part II. Applications of chitosan.Polimery-W 47, 396–403 (2002b).

    CAS  Google Scholar 

  • Struszczyk M.H.: Chitin and chitosan — part III. Some aspects of biodegradation and bioactivity.Polimery-W 47, 619–629 (2002c).

    CAS  Google Scholar 

  • Suchardová O., Volfová O., Krumphanzl V.: Degradation of cellulose by thermophilic bacteria.Folia Microbiol. 31, 1–7 (1986).

    Article  Google Scholar 

  • Sue H.J., Wang S., Jane J.L.: Morphology and mechanical behavior of engineering soy plastics.Polymer 38, 5035–5040 (1997).

    Article  CAS  Google Scholar 

  • Thakur P.S., Borah B., Baruah S.D., Nigam J.N.: Growth-associated production of poly-3-hydroxybutyrate byBacillus mycoides.Folia Microbiol. 46, 488–494 (2001).

    Article  CAS  Google Scholar 

  • Tiefenbacher K.F.: Starch-based foamed materials — use and degradation properties.J.Macromol.Sci.Pure Appl.Chem. A30, 727–731 (1993).

    CAS  Google Scholar 

  • Tohyama A.M., Patarinska T., Qiang Z., Shimizu K.: Modeling of the mixed culture and periodic control for PHB production.Biochem.Eng.J. 9, 1–17 (2002).

    Google Scholar 

  • Varadarajan S., Miller D.: Catalytic upgrading of fermentation-derived organic acids.J.Biotechnol.Progr. 15, 845–854 (1999).

    Article  CAS  Google Scholar 

  • Vikhoreva G.A., Gorbacheva I.N., Galbraikh L.S.: Synthesis and properties of water-soluble derivatives of chitin. A review.Fibre Chem. 31, 274–278 (1999).

    Article  CAS  Google Scholar 

  • Vikman M., Itavaara M., Poutanen K.: Biodegradation of starch-based materials.J.Macromol.Sci.Pure Appl.Chem. A32, 863–866 (1995).

    CAS  Google Scholar 

  • Vikman M., Hulleman S.H.D., Van der Zee M., Myllarinen P., Feil H.: Morphology and enzymatic degradation of thermoplastic starch-polycaprolactone blends.J.Appl.Polym.Sci. 74, 2594–2604 (1999).

    Article  CAS  Google Scholar 

  • Wang L., Shogren R.L., Carriere C.: Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion.Polym.Eng.Sci. 40, 499–506 (2000).

    Article  CAS  Google Scholar 

  • Weterings R., Kuijper J., Smeets E.:81 Options: Technology for Sustainable Development. Final Report EC of the Environment-Oriented Technology, Foresight Study. Apeldoorn (The Netherlands) 1997.

  • Wiedmann W., Strobel E.: Compounding of thermoplastic starch with twin-screw extruders.Starch-Starke 43, 138–145 (1991).

    Article  CAS  Google Scholar 

  • Witkowska D., Maj A.: Production of lytic enzymes byTrichoderma spp. and their effect on the growth of phytopathogenic fungi.Folia Microbiol. 47, 279–284 (2002).

    Article  CAS  Google Scholar 

  • Wong H.H., Lee S.Y.: Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinantEscherichia coli.Appl.Microbiol.Biotechnol. 50, 30–33 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wool R.P., Raghavan D., Wagner G.C., Billieux S.: Biodegradation dynamics of polymer-starch composites.J.Appl.Polym.Sci. 77, 1643–1657 (2000).

    Article  CAS  Google Scholar 

  • Xu S.Y., Chen X.F., Sun D.W.: Preservation of kiwi fruit coated with an edible film at ambient temperature.J.Food Eng. 50, 211–216 (2001).

    Article  Google Scholar 

  • Yang A.L., Wu R.J., Zhu P.F.: Thermal analysis and miscibility of chitin/polycaprolactone blends.J.Appl.Polym.Sci. 81, 3117–3123 (2001).

    Article  CAS  Google Scholar 

  • Yu J., Si Y.T.: A dynamic study and modeling of the formation of polyhydroxyalkanoates combined with treatment of high strength wastewater.Environ.Sci.Technol. 35, 3584–3588 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Yu J., Yingtao S.I., Wan K.R., Wong C.: Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates byRalstonia eutropha.Proc.Biochem. 37, 731–738 (2002).

    Article  CAS  Google Scholar 

  • Zasypkin D.V., Braudo E.E., Tolstoguzov V.B.: Multicomponent biopolymer gels.Food Hydrocolloids 11, 159–170 (1997).

    Article  CAS  Google Scholar 

  • Zhang Y.Q., Li J., Chen A.M., Huang Y.: Biodegradation of cellulose derivative-polycaprolactone blends.Cellulose Chem.Technol. 34, 51–62 (2000).

    CAS  Google Scholar 

  • Zhong Z.K., Sun X.Z.S.: Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate.Polymer 42, 6961–6969 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research was supported by grant 525/00/1283 of theGrant Agency of the Czech Republic and byInstitutional Research Concept AV 0Z 502 0903.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flieger, M., Kantorová, M., Prell, A. et al. Biodegradable plastics from renewable sources. Folia Microbiol 48, 27–44 (2003). https://doi.org/10.1007/BF02931273

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931273

Keywords

Navigation