Skip to main content
Log in

Characterization of a newly isolatedcis-1,2-dichloroethylene and aliphatic compound-degrading bacterium,Clostridium sp. strain KYT-1

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Acis-1,2-dichloroethylene (cis-DCE)-degrading anaerobic bacterium,Clostridium sp. strain KYT-1, was isolated from a sediment sample collected from a landfill site in Nanji-do, Seoul, Korea. The KYT-1 strain is a gram-positive, endospore-forming, motile, rod-shaped anaerobic bacterium, of approximately 2.5∼3.0 μm in length. The degradation ofcis-DCE is closely related with the growth of the KYT-1 strain, and it was stopped when the growth of the KYT-1 strain became constant. Although the pathway ofcis-DCE degradation by strain KYT-1 remains to be further elucidated, no accumulation of the harmful intermediate, vinyl chloride (VC), was observed during anaerobiccis-DCE degradation. Strain KYT-1 proved able to degrade a variety of volatile organic compounds, including VC, isomers of DCE (1,1-dichloroethylene,trans-1,2-dichloroethylene, andcis-DCE), trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, 1,1,1-trichloroethane, and 1,1,2-trichloroethane. Strain KYT-1 degradedcis-DCE at a range of temperatures from 15 to 37°C, with an optimum at 30°C, and at a pH range of 5.5 to 8.5, with an optimum at 7.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds.Environ. Sci. Technol. 21: 722–736.

    Article  CAS  Google Scholar 

  2. Quinton, G. E., R. J. Buchanan, D. E. Ellis, Jr., and S. H. Shoemaker (1997) A method to compare groundwater cleanup technologies.Remediation 8: 7–16.

    Article  Google Scholar 

  3. Humayra, A. S., Y. Hasegawa, I. Nomura, Y. C. Chang, T. Sato, and K. Takamizawa (2005) Evaluation of different culture conditions ofclostridium bifermentans DPH-1 for cost effective PCE degradation.Biotechnol. Bioprocess Eng. 10: 40–46.

    Article  CAS  Google Scholar 

  4. Scholz-Muramatsu, H., A. Neumann, M. Messmer, E. Moore, and G. Diekert (1995) Isolation and characterization ofDehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium.Arch. Microbiol. 163: 48–56.

    Article  CAS  Google Scholar 

  5. Gerritse, I., V. Renard, T. M. Pedro Gomes, P. A. Lawson, M. D. Collins, and J. C. Gottschal (1996)Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols.Arch. Microbiol. 165: 132–140.

    Article  CAS  Google Scholar 

  6. Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A. J. B. Zehnder (1998)Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration.Arch. Microbiol. 169: 313–321.

    Article  CAS  Google Scholar 

  7. Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium.Clostridium bifermentans DPH-1.J. Biosci. Bioeng. 89: 489–491.

    Article  CAS  Google Scholar 

  8. Suyama, A., R. Iwakiri, K. Kai, T. Tokunaga, N. Sera, and K. Furukawa (2001) Isolation and characterization ofDesulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes.Biosci. Biotechnol. Biochem. 65: 1474–1481.

    Article  CAS  Google Scholar 

  9. He, J., K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Löffler (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium.Nature 124: 62–65.

    Article  Google Scholar 

  10. Maymo-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane.Science 276: 1568–1571.

    Article  CAS  Google Scholar 

  11. Müller, J. A., B. M. Rosner, G. Von Abendroth, G. Meshulam-Simon, P. L. McCarty, and A. M. Spormann (2004) Molecular identification of the catabolic vinyl chloride reductase fromDehalococcoides sp. strain VS and its environmental distribution.Appl. Environ. Microbiol. 70: 4880–4888.

    Article  Google Scholar 

  12. Sung, Y., K. M. Ritalahti, R. P. Apkarian, and F E. Löffler (2006) Quantitative PCR confirms purity of Strain GT, a novel trichloroethene-to-ethene-respiringDehalococcoides isolate.Appl. Environ. Microbiol. 72: 1980–1987.

    Article  CAS  Google Scholar 

  13. Ottow, J. C. (1968) Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron-reduction inAerobacter aerogenes.Z. Allg. Mikrobiol. 8: 441–443.

    Article  CAS  Google Scholar 

  14. Zeikus, J. G. (1977) The biology of methanogenic bacteria.Bacteriol. Rev. 41: 514–541.

    CAS  Google Scholar 

  15. Pfenning, N., F. Widdel, and H. G. Trüper (1992) The dissimilatory sulfate-reducing bacteria. pp. 926–940. In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.).The Prokaryotes. 2nd ed., Vol. 1 Springer-Verlag, New York, NY, USA.

    Google Scholar 

  16. Hobbie, J. E., R. J. Daley, and S. Jasper (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy.Appl. Environ. Microbiol. 33: 1225–1228.

    CAS  Google Scholar 

  17. Bromfield, S. M. (1954) The reduction of iron oxide by bacteria.J. Soil Sci. 5: 129–139.

    Article  Google Scholar 

  18. Bergmann, J. G., and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha.Anal. Chem. 29: 241–243.

    Article  CAS  Google Scholar 

  19. Bradley, P. M. and F. H. Chapelle (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments.Environ. Sci. Technol. 30: 2084–2086.

    Article  CAS  Google Scholar 

  20. Bradley, P. M., and F. H. Chapelle (1998) Microbial mineralization of VC and DCE under different terminal electron accepting conditions.Anaerobe 4: 81–87.

    Article  CAS  Google Scholar 

  21. Bradley, P. M., F. H. Chapelle, and D. R. Lovley (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene.Appl. Environ. Microbiol. 64: 3102–3105.

    CAS  Google Scholar 

  22. Bradley, P. M., and F. H. Chapelle (1997) Kineties of DCE and VC mineralization under methanogenic and Fe(III)-reducing conditions.Environ. Sci. Technol. 31: 2692–2696.

    Article  CAS  Google Scholar 

  23. Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes byMethylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography.Appl. Environ. Microbiol. 62: 3304–3312.

    Google Scholar 

  24. Hashimoto, A., K. Iwasaki, N. Nakasugi, M. Nakajima, and O. Yagi (2002) Degradation pathways of trichloroethylene and 1,1,1-trichloroethane byMycobacterium sp. TA27.Biosci. Biotechnol. Biochem. 66: 385–390.

    Article  CAS  Google Scholar 

  25. Verschueren, K. (1983)Handbook of Environmental Data on Organic Materials. 2nd ed., Van Nostrand Reinhold Co., New York, NY, USA.

    Google Scholar 

  26. Hata, J., N. Miyata, E. S. Kim, K. Takamizawa, and K. Iwahori (2004) Anaerobic degradation ofcis-1,2-dichloroethylene and vinyl chloride byClostridium sp. strain DC1 isolated from landfill leachate sediment.J. Biosci. Bioeng. 97: 196–201.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Takamizawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, ES., Nomura, I., Hasegawa, Y. et al. Characterization of a newly isolatedcis-1,2-dichloroethylene and aliphatic compound-degrading bacterium,Clostridium sp. strain KYT-1. Biotechnol Bioproc E 11, 553–556 (2006). https://doi.org/10.1007/BF02932083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932083

Keywords

Navigation