Skip to main content
Log in

Production of extracellular water insoluble β-1,3-glucan (curdlan) fromBacillus sp. SNC07

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

β-1,3-Glucan (curdlan) is a water-insoluble polysaccharide composed exclusively of β-1,3 linked glucose residues. Extracellular curdlan was mostly synthesized byAgrobacterium species andAlcaligenes faecalis under nitrogen-limiting conditions. In this study, we screened the microorganisms capable of producing extracellular curdlan from soil samples. For the first time, we reported Gram-positive bacteriumBacillus sp. SNC 107 capable of producing extracellular curdlan in appreciable amounts. The effect of different carbon sources on curdlan production was studied and found that the yield of curdlan was more when glucose was used as carbon source. It was also found that maximum production was achieved when the initial concentration of ammonium and phosphate in the medium was 0.5 and 1.9 g/L respectively. In this study the curdlan production was increased from 3 to 7 g/L in shake flask cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada, T., M. Masada, K. Fujimori, and I. Maeda (1996) Production of a firm, resilient gel-forming polysaccharide by a mutant ofAlcaligenes faecalis var. myxogenes 10c3.Agric. Biol. Chem. 30: 196–198.

    Google Scholar 

  2. Lawford, H., J. Keenan, K. Phillips, and W. Orts (1986) Influence of bioreactor design on the rate and amount of curdlan-type exopolysaccharide production byAlcaligenes faecalis.Biotechnol. Lett. 8: 145–150.

    Article  CAS  Google Scholar 

  3. Lee, J. H., I. Y. Lee, M. K. Kim, and Y. H. Park (1999) Optimal pH control of batch processes for production of curdlan byAgrobacterium species.J. Ind. Microbiol. Biotechnol. 23: 143–148.

    Article  CAS  Google Scholar 

  4. Harada, T., A. Misaki, and H. Saito (1968) Curdlan: a bacterial gel-forming β-1,3-glucan.Arch. Biochem. Biophys. 124: 292–298.

    Article  CAS  Google Scholar 

  5. Masayuki, T. and N. Yukihiro (1990) Noodle made of rice powder and producing method thereof.Japanese Patent 02249466.

  6. Spicer, E. J. E., E. I. Goldenthal, and T. Ikeda (1999) A toxicological assessment of curdlan.Food Chem. Toxicol. 37: 455–479.

    Article  CAS  Google Scholar 

  7. Kanke, M., E. Tanabe, H. Katayama, Y. Koda, and H. Yoshitomi (1995) Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositoriesin vitro.Biol. Pharm. Bull. 18: 1154–1158.

    CAS  Google Scholar 

  8. Takeda-Hirokawa, N., L. P. Neoh, H. Akimoto, H. Kaneko, T. Hishikawa, I. Sekigawa, H. Hashimoto, S.-I. Hirose, T. Murakami, N. Yamamoto, T. Mimura, and Y. Kaneko (1997) Role of curdlan sulfate in the binding of HIV-1 gp120 to CD4 molecules and the production of gp120-mediated TNF-α.Microbiol. Immunol. 41: 741–745.

    CAS  Google Scholar 

  9. Kim, I. Y., K. E. Rye, W. A. Choi, Y. H. Rhee, and I. Y. Lee (2003) Enhanced production of β-1,3-D-glucan by a mutant strain ofAgrobacterium species.Biochem. Eng. J. 16: 163–168.

    Article  CAS  Google Scholar 

  10. Miller, G. L. (1959) Use of dinitrosalicylic acid rengent for determination of reducing sugar.Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  11. Srienc, F., B. Arnold, and J. E. Bailey (1984) Characterization of intracellular accumulation of poly-β-hydroxybutyrate (PHB) in individual cells ofAlcaligenes eutrophus H16 by flow cytometry.Biotechnol. Bioeng. 26: 982–987.

    Article  CAS  Google Scholar 

  12. Chen, Jr., P. S., T. Y. Toribara, and H. Warner (1956) Microdetermination of phosphorus.Anal. Biochem. 28: 1756–1758.

    CAS  Google Scholar 

  13. Naganishi, I., K. Kimura, S. Kusui, and E. Yamazaki (1974) Complex formation of gel-forming bacterial β-1,3-D-glucan (curdlan type polysaccharide) with dyes in aqueous solution.Carbohydr. Res. 32: 47–52.

    Article  Google Scholar 

  14. Lee, I. Y., W. T. Seo, K. G. Kim, M. K. Kim, C. S. Park, and Y. H. Park (1997) Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation ofAgrobacterium sp.J. Ind. Microbiol. Biotechnol. 18: 255–259.

    Article  CAS  Google Scholar 

  15. Mimura, T. (1993) Biosynthesis of curdlan from culture media containing13C-labeled glucose as the carbon source.Carbohydr. Res. 240: 153–159.

    Article  Google Scholar 

  16. Sutherland, I. W. (1977) Microbial exopolysaccharide synthesis, pp. 40–57. In: P. A. Sanford and A. Lakin (eds.).Extracellular Microbial Polysaccharides. American Chemical Society. Washington, DC, USA.

    Google Scholar 

  17. Kim, M. K., I. Y. Lee, J. H. Lee, K. T. Kim, Y. H. Rhee, and Y. H. Park (2000) Residual phosphate concentration under nitrogen-limiting conditions regulates curdlan production inAgrobacterium species.J. Ind. Microbiol. Biotechnol. 25: 180–183.

    Article  CAS  Google Scholar 

  18. Farres, J., G. Caminal, and J. Lopez-Santin (1997) Influence of phosphate on rhamnose-containing exopolysaccharide rheology and production byKlebsiella 1–714.Appl. Microbiol. Biotechnol. 48: 522–527.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gummadi, S.N., Kumar, K. Production of extracellular water insoluble β-1,3-glucan (curdlan) fromBacillus sp. SNC07. Biotechnol. Bioprocess Eng. 10, 546–551 (2005). https://doi.org/10.1007/BF02932292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932292

Keywords

Navigation