Skip to main content
Log in

Specific detection of DNA using quantum dots and magnetic beads for large volume samples

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Here we present a sensitive DNA detection protocol using quantum dots (QDs) and magnetic beads (MBs) for large volume samples. In this study, QDs, conjugated with streptavidin, were used to produce fluorescent signals while magnetic beads (MBs) were used to isolate and concentrate the signals. The presence of target DNAs leads to the sandwich hybridization between the functionalized QDs, the target DNAs and the MBs. In fact, the QDs-MBs complex, which is bound using the target DNA, can be isolated and then concentrated. The binding of the QDs to the surface of the MBs was confirmed by confocal microscopy and Cd elemental analysis. It was found that the fluorescent intensity was proportional to concentration of the target DNA, while the presence of non-complementary DNA produced no significant fluorescent signal. In addition, the presence of low copies of target DNAs such as 0.5 pM in large volume samples up to 40 mL was successfully detected by using a magnet-assisted concentration protocol which consequently results in the enhancement of the sensitivity more than 100-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taton, T. A., C. A. Mirkin, and R. L. Letsinger (2000) Scanometric DNA array detection with nanoparticle probes.Science 289: 1757–1760.

    Article  CAS  Google Scholar 

  2. Wang, J., G. D. Liu, and A. Merkoci (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets.J. Am. Chem. Soc. 125: 3214–3215.

    Article  CAS  Google Scholar 

  3. Yoo, S. M., K. C. Keum, S. Y. Yoo, J. Y. Choi, K. H. Chang, N. C. Yoo, W. M. Yoo, J. M. Kim, D. Lee, and S. Y. Lee (2004) Development of DNA microarray for pathogen detection.Biotechnol. Bioprocess Eng. 9: 93–99.

    Article  CAS  Google Scholar 

  4. Li, H. X. and L. Rothberg (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles.Proc. Natl. Acad. Sci. USA 101: 14036–14039.

    Article  CAS  Google Scholar 

  5. Guedon, P., T. Livache, F. Martin, F. Lesbre, A. Roget, G. Bidan, and Y. Levy (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging.Anal. Chem. 72: 6003–6009.

    Article  CAS  Google Scholar 

  6. Gerion, D., F. Q. Chen, B. Kannan, A. H. Fu, W. J. Parak, D. J. Chen, A. Majumdar, and A. P. Alivisatos (2003) Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays.Anal. Chem. 75: 4766–4772.

    Article  CAS  Google Scholar 

  7. Drummond, T. G., M. G. Hill, and J. K. Barton (2003) Electrochemical DNA sensors.Nat. Biotechnol. 21: 1192–1199.

    Article  CAS  Google Scholar 

  8. Wang, J., D. K. Xu, A. N. Kawde, and R. Polsky (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization.Anal. Chem. 73: 5576–5581.

    Article  CAS  Google Scholar 

  9. Wang, J. (2003) Nanoparticle-based electrochemical DNA detection.Anal. Chim. Acta 500: 247–257.

    Article  CAS  Google Scholar 

  10. Park, J. W., H. S. Jung, H. Y. Lee, and T. Kawai (2005) Electrical recognition of label-free oligonucleotides upon streptavidin-modified electrode surfaces.Biotechnol. Bioprocess Eng. 10: 505–509.

    Article  CAS  Google Scholar 

  11. Yoon, H. C. and H. S. Kim (2004) Bioelectrocatalyzed signal amplification for affinity interactions at chemically modified electrodes.Biotechnol. Bioprocess Eng. 9: 107–111.

    Article  CAS  Google Scholar 

  12. Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998) Semiconductor nanocrystals as fluorescent biological labels.Science 281: 2013–2016.

    Article  CAS  Google Scholar 

  13. Alivisatos, A. P. (1996) Semiconductor clusters nanocrystals, and quantum dots.Science 271: 933–937.

    Article  CAS  Google Scholar 

  14. Bailey, R. E. and S. M. Nie (2003) Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size.J. Am. Chem. Soc. 125: 7100–7106.

    Article  CAS  Google Scholar 

  15. Li, Y. G., Y. T. H. Cu, and D. Luo (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes.Nat. Biotechnol. 23: 885–889.

    Article  CAS  Google Scholar 

  16. Gao, X. H., W. C. W. Chan, and S. M. Nie (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding.J. Biomed. Opt. 7: 532–537.

    Article  CAS  Google Scholar 

  17. Ho, Y. P., M. C. Kung, S. Yang, and T. H. Wang (2005) Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes.Nano Lett. 5: 1693–1697.

    Article  CAS  Google Scholar 

  18. Chan, W. C. W. and S. M. Nie (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science 281: 2016–2018.

    Article  CAS  Google Scholar 

  19. Alivisatos, P. (2004) The use of nanocrystals in biological detection.Nat. Biotechnol. 22: 47–52.

    Article  CAS  Google Scholar 

  20. Michalet, X., F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss (2005) Quantum dots for live cells,in vivo imaging, and diagnostics.Science 307: 538–544.

    Article  CAS  Google Scholar 

  21. Pumera, M., M. T. Castaneda, M. I. Pividori, R. Eritja, A. Merkoci, and S. Alegret (2005) Magnetically trigged direct electrochemical detection of DNA hybridization using Au-67 quantum dot as electrical tracer.Langmuir 21: 9625–9629.

    Article  CAS  Google Scholar 

  22. Su, X. L. and Y. B. Li (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection ofEscherichia coli O157:H7.Anal. Chem. 76: 4806–4810.

    Article  CAS  Google Scholar 

  23. Sun, X. L., W. X. Cui, C. Haller, and E. L. Chaikof (2004) Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads.Chembiochem 5: 1593–1596.

    Article  CAS  Google Scholar 

  24. Nam, J. M., C. S. Thaxton, and C. A. Mirkin (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins.Science 301: 1884–1886.

    Article  CAS  Google Scholar 

  25. Patolsky, F., Y. Weizmann, E. Katz, and I. Willner (2003) Magnetically amplified DNA assays (MADA): Sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles.Angew. Chem. Int. Ed. Engl. 42: 2372–2376.

    Article  CAS  Google Scholar 

  26. Yang, L. J. and Y. B. Li (2005) Quantum dots as fluorescent labels for quantitative detection ofSalmonella typhimurium in chicken carcass wash water.J. Food Protect. 68: 1241–1245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.S., Kim, B.C., Lee, J.H. et al. Specific detection of DNA using quantum dots and magnetic beads for large volume samples. Biotechnol. Bioprocess Eng. 11, 449–454 (2006). https://doi.org/10.1007/BF02932313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932313

Keywords

Navigation