Skip to main content
Log in

Structural plasticity of synapses in Alzheimer's disease

  • Applied Aspects of Synaptic Plasticity
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Plasticity of the synaptic contact zone was previously observed following loss of synapses in the cerebral cortex of normal aging humans. The present study was undertaken to determine if there was quantitative evidence of synapse loss and synapse plasticity in the inferior temporal, superior parietal, parieto-occipital, and superior frontal cortical regions in Alzheimer's disease (AD), and how such changes related to the neurofibrillary tangles and amyloid plaques. The results showed that age at autopsy did not correlate with the numbers of synapses, plaques, or tangles. However, the numbers of synapses strongly reflected the pathology of AD; in all four brain regions, there were fewer synapses as the numbers of plaques and tangles increased. In the synaptic temporal and superior parietal cortices, the loss of synapses was accompanied by an increase in the synaptic contact length. The results suggest that, in some cerebral cortical brain regions, synapses are capable of plasticity changes, even when the pathology of AD and loss of synapses are severe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams I. (1987a) Comparison of synaptic changes in the precentral and postcentral cerebral cortex of aging humans: a quantitative ultrastructural study.Neurobiol. Aging 8, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Adams I. (1987b) Plasticity of the synaptic contact zone following loss of synapses in the cerebral cortex of aging humans.Brain Res. 424, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Adams I. and Jones D. G. (1982) Synaptic remodelling and astrocytic hypertrophy in rat cerebral cortex from early to late adulthood.Neurobiol. Aging 3, 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Adams I. and Jones D. J. (1987) Effects of normal and pathological aging on brain morphology: neurons and synapses.Current Topics in Research on Synapses, vol. 4, Jones D. J., ed., Liss, NY, pp. 1–84.

    Google Scholar 

  • Beyreuther K. and Masters C. (1991) Amyloid βA4 protein deposition and the cause of Alzheimer's disease.J. Neurochem. 57 (suppl.), S3.

    Google Scholar 

  • Bjorklund A. and Stenevi U. (1979) Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system.Physiol. Rev. 49, 62–100.

    Google Scholar 

  • Butcher L. L. and Woolf N. J. (1989) Neurotrophic agents exacerbate the pathologic cascade of Alzheimer's disease.Neurobiol. Aging 10, 557–570.

    Article  PubMed  CAS  Google Scholar 

  • Davies C. A., Mann D. M. A., Sumpter P. Q., and Yates P. O. (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease.J. Neurol. Sci. 78, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • Davies L., Wolska B., Hilbich, C., Multhaup G., Martins R., Simms M., Beyreuther K., and Masters C. (1988) A4 amyloid protein deposition and the diagnosis of Alzheimer's disease.Neurology 38, 1688–1693.

    PubMed  CAS  Google Scholar 

  • Flood D. G. and Coleman P. D. (1990) Hippocampal plasticity in normal aging and decreased plasticity in Alzheimer's disease.Prog. Brain Res. 83, 435–442.

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y., Morrell F., and DeToledo-Morrell L. (1988) Remodeling of synaptic architecture during hippocampal “kindling,”Proc. Natl. Acad. Sci. USA 85, 3260–3264.

    Article  PubMed  CAS  Google Scholar 

  • Gibson P. H. (1983) EM study of the numbers of cortical synapses in the brains of aging people and people with Alzheimer-type dementia.Acta Neuropathol. (Berl.) 62, 127–133.

    Article  CAS  Google Scholar 

  • Goldowitz D., Scheff S. W., and Cotan C. W. (1979) The specificity of reactive synaptognesis: a comparative study in the adult rat hippocampal formation.Brain Res. 170, 427–441.

    Article  PubMed  CAS  Google Scholar 

  • Hannay H. and Levin H. (1987) Recovery of function.National Forum, The Phi Kappa Phi Journal. Spring (1987), 7.

  • Hansen L. A., DeTeresa R., Davies P., and Terry R. D. (1988) Neocortial morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer's disease.Neurology 38, 48–54.

    PubMed  CAS  Google Scholar 

  • Ihara Y. (1988) Massive somatodendritic sprouting of cortical neurons in Alzheimer's disease.Brain Res. 459, 138–144.

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y. (1991) The regenerative process of Alzheimer's disease.J. Neurochem. 57 (suppl.), S3.

    Google Scholar 

  • Jorm A. F. (1985) Subtypes of Alzheimer's dementia: a conceptual analysis and critical review.Psychol. Med. 15, 543–553.

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian Z. S. (1985) Diagnosis of Alzheimer's disease.Arch. Neurol. 42, 1097–1105.

    PubMed  CAS  Google Scholar 

  • Lewis D. A., Higgins G. A., Young W. G., Goldgaber D., Gajdusek D. C., Wilson M. C., and Morrison J. H. (1988) Distribution of precursor amyloid-β-protein messenger RNA in human cerebral cortex: Relationship to neurofibrillary tangles and neuritic plaques.Proc. Natl. Acad. Sci. USA 85, 1691–1695.

    Article  PubMed  CAS  Google Scholar 

  • Masters C. and Beyreuther R. (1988) Amyloidogenic A4 subunit: clues to the pathogenesis of the neurofibrillary tangle, Alzheimer plaque, and congophilic angiopathy.Aging and the Brain, Terry R. D., ed., Raven, NY, pp. 183–203.

    Google Scholar 

  • Pasternack J., Estus S., Palmert M., Usiak M., Cheung T. and Younkin S. (1991) Amyloid precursor processing in Alzheimer's disease.J. Neurochem. 57 (suppl.), S3.

    Google Scholar 

  • Paula-Barosa M. M., Saraiva A., Tavares M. A., Borges M. M., and Verwer R. W. H. (1986) Alzheimer's disease: maintenance of neuronal and synaptic densities in frontal cortical lay-ers 2 and 3.Acta Neurol. Scand. 74, 404–408.

    Article  Google Scholar 

  • Phelps C. H. (1990) Neural plasticity in aging and Alzheimer's disease: some selected comments.Prog. Brain Res. 86, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Scheff S. W., DeKosky S. T., and Price D. A. (1990) Quantitative assessment of cortical synaptic density in Alzheimer's disease.Neurobiol. Aging 11, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Terry R. D. and Hansen L. A. (1988) Some morphometric aspects of Alzheimer's disease and of normal aging.Aging and the Brain. Terry R. D., ed., Raven, NY, pp. 109–114.

    Google Scholar 

  • Uchida Y., Ihara Y., and Tomonoga M. (1988) Alzheimer's disease brain extracts stimulate the survival of cerebral cortical neurons from neonatal rats.Biochem. Biophys. Res. Commun. 150, 1263–1267.

    Article  PubMed  CAS  Google Scholar 

  • Whitson J. S., Selkoe D. J., and Cotman C. W. (1989) Amyloid beta protein enhances the survival of hippocampal neurons in vitro.Science 243, 1488–1490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, I.M. Structural plasticity of synapses in Alzheimer's disease. Mol Neurobiol 5, 411–419 (1991). https://doi.org/10.1007/BF02935562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935562

Index Entries

Navigation