Skip to main content
Log in

Kinetic mechanism of nucleotide binding toEscherichia coli transcription termination factor Rho: Stopped-flow kinetic studies using ATP and fluorescent ATP analogues

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. Fluorescence stopped-flow methods using ATP and the fluorescent 2’(3’)-O-(N-methylanthraniloyl) derivatives (mant-derivatives) of ATP and ADP were used to probe the kinetics of nucleotide binding to and dissociation from the Rho-RNA complex. Presteady state nucleotide binding kinetics provides evidence for the presence of negative cooperativity in nucleotide binding among the multiple nucleotide binding sites on Rho hexamer. The binding of the first nucleotide to the Rho-RNA complex occurs at a bimolecular rate of 3.6×106 M−1sec−1, whereas the second nucleotide binds at a slower rate of 4.7×105 M−1 sec−1 at 18°C. RNA complexed with Rho affects the kinetics of nucleotide interaction with the active sites through conformational changes to the Rho hexamer, allowing the incoming nucleotide to be more accessible to the sites. Adenine nucleotide binding and dissociation is more favorable when RNA is bound to Rho, whereas ATP binding and dissociation step in the absence of RNA occurs significantly slower, at a rate ∼70- and ∼40-fold slower than those observed with the Rho-RNA complex, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brennan, C. A., A. J. Dombroski, and T. Platt (1987) Transcription termination factor rho is an RNA-DNA helicase.Cell 48: 945–952.

    Article  CAS  Google Scholar 

  2. Geiselmann, J., Y. Wang, S. E. von Seifried, and P. H. Hippel (1993) A physical model for the translocation and helicase activities ofEscherichia coli transcription termination protein Rho.Proc. Natl. Acad. Sci. USA 90: 7754–7758.

    Article  CAS  Google Scholar 

  3. Richardson, J. P. (1996) Structural organization of transcription termination factor Rho.J. Biol. Chem. 271: 1251–1254.

    CAS  Google Scholar 

  4. Stitt, B. L. (1988)Escherichia coli transcription termination protein rho has three hydrolytic sites for ATP.J. Biol. Chem. 263: 11130–11137.

    CAS  Google Scholar 

  5. Geiselmann, J. and P. H. von Hippel (1992). Functional interactions of ligand cofactorswithEscherichia coli transcription termination factor rho: I. Binding of ATP.Protein Sci. 1: 850–860.

    Article  CAS  Google Scholar 

  6. Kim, D. E., K. Shigesada, and S. S. Patel (1999) Transcription termination factor Rhocontains three noncatalytic nucleotide binding sites.J. Biol. Chem. 274: 11623–11628.

    Article  CAS  Google Scholar 

  7. Geiselmann, J., T. D. Yager, and P. H. von Hippel (1992) Functional interactions of ligand cofactors withEscherichia coli transcription termination factor rho: II. Binding of RNA.Protein Sci. 1: 861–873.

    Article  CAS  Google Scholar 

  8. Wang, Y. and P. H. von Hippel (1993)Escherichia coli transcription termination factor rho: II. Binding of oligonucleotide cofactors.J. Biol. Chem. 268: 13947–13955.

    CAS  Google Scholar 

  9. McSwiggen, J. A., D. G. Bear, and P. H. von Hippel (1988) Interactions ofEscherichia coli transcription termination factor rho with RNA: I. Binding stoichiometries and free energies.J. Mol. Biol. 199: 609–622.

    Article  CAS  Google Scholar 

  10. Yu, X., T. Horiguchi, K. Shigesada, and E. H. Egelman (2000) Three-dimensional reconstruction of transcription termination factor rho: Orientation of theN-terminal domain and visualization of an RNA-binding site.J. Mol. Biol. 299: 1279–1287.

    Article  CAS  Google Scholar 

  11. Richardson, J. P. (1982) Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites.J. Biol. Chem. 257: 5760–5766.

    CAS  Google Scholar 

  12. Wang, Y. and P. H. von Hippel (1993)Escherichia coli transcription termination factor rho: I. ATPase activation by oligonucleotide cofactors.J. Biol. Chem. 268: 13940–13946.

    CAS  Google Scholar 

  13. Miwa, Y., T. Horiguchi, and K. Shigesada (1995) Structural and functional dissections of transcription termination factor rho by random mutagenesis.J. Mol. Biol. 254: 815–837.

    Article  CAS  Google Scholar 

  14. Burgess, B. R. and J. P. Richardson (2001) RNA passes through the hole of the protein hexamer in the complex with theEscherichia coli Rho factor.J. Biol. Chem. 276: 4182–4189.

    Article  CAS  Google Scholar 

  15. Kim, D. E. and S. S. Patel (2001) The kinetic pathway of RNA binding to theEscherichia coli transcription termination factor Rho.J. Biol. Chem. 276: 13902–13910.

    CAS  Google Scholar 

  16. Lowery, C. and J. P. Richardson (1977) Characterization of the nucleoside triphosphatephosphohydrolase (ATPase) activity of RNA synthesis termination factor----: II. Influence of synthetic RNA homopolymers and random copolymers on the reaction.J. Biol. Chem. 252: 1381–1385.

    CAS  Google Scholar 

  17. Stitt, B. L. and Y. Xu (1998) Sequential hydrolysis of ATP molecules bound in interacting catalytic sites ofEscherichia coli transcription termination protein Rho.J. Biol. Chem. 273: 26477–26486.

    Article  CAS  Google Scholar 

  18. Mori, H., M. Imai, and K. Shigesada (1989) Mutant rho factors with increased transcription termination activities: II. Identification and functional dissection of amino acid changes.J. Mol. Biol. 210: 39–49.

    Article  CAS  Google Scholar 

  19. Finger, L. R. and J. P. Richardson (1981) Procedure for purification ofEscherichia coliribonucleic acid synthesis termination protein rho.Biochemistry 20: 1640–1645.

    Article  CAS  Google Scholar 

  20. Geiselmann, J., T. D. Yager, S. C. Gill, P. Calmettes, and P. H. von Hippel (1992) Physical properties of theEscherichia coli transcription termination factor rho: 1. Association states and geometry of the rho hexamer.Biochemistry 31: 111–121.

    Article  CAS  Google Scholar 

  21. Hiratsuka, T. (1983) New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes.Biochim. Biophys. Acta 742: 496–508.

    CAS  Google Scholar 

  22. Jameson, D. M. and J. F. Eccleston (1997) Fluorescent nucleotide analogs: synthesis and applications.Methods Enzymol. 278: 363–390.

    Article  CAS  Google Scholar 

  23. Moore, K. J. and T. M. Lohman (1994) Kinetic mechanism of adenine nucleotide binding toand hydrolysis by theEscherichia coli Rep monomer: 1. Use of fluorescent nucleotide analogues.Biochemistry 33: 14550–14564.

    Article  CAS  Google Scholar 

  24. Piper, J. M. and S. J. Lovell (1981) One-step molybdate method for rapid determination of inorganic phosphate in the presence of protein.Anal. Biochem. 117: 70–75.

    Article  CAS  Google Scholar 

  25. Cremo, C. R., J. M. Neuron, and R. G. Yount (1990) Interaction of myosin subfragment 1 with fluorescent ribosemodified nucleotides: A comparison of vanadate trapping and SH1-SH2 cross-linking.Biochemistry 29: 3309–3319.

    Article  CAS  Google Scholar 

  26. Woodward, S. K., J. F. Eccleston, and M. A. Geeves (1991) Kinetics of the interaction of 2′(3′)-O-(N-methylanthraniloyl)-ATP with myosin subfragment 1 and actomyosin subfragment: 1. Characterization of two acto-S1-ADP complexes.Biochemistry 30: 422–430.

    Article  CAS  Google Scholar 

  27. Bogden, C. E., D. Fass, N. Bergman, M. D. Nichols, and J. M. Berger (1999). The structural basis for terminator recognition by the Rho transcription termination factor.Molecular Cell 3: 487–493.

    Article  CAS  Google Scholar 

  28. Martin, M. C. S., N. P. Stamford, N. Dammerova, N. E. Dixon, and J. M. Carazo (1995). A structural model for theEscherichia coli DnaB helicase based on electron microscopy data.J. Struct. Biol. 114: 167–176.

    Article  Google Scholar 

  29. Yu, X., M. J. Jezewska, W. Bujalowski, and E. H. Egelman (1996). The hexamericE. coli DnaB helicase can exist in different quaternary states.J. Mol. Biol. 259: 7–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DE. Kinetic mechanism of nucleotide binding toEscherichia coli transcription termination factor Rho: Stopped-flow kinetic studies using ATP and fluorescent ATP analogues. Biotechnol Bioproc E 9, 23–34 (2004). https://doi.org/10.1007/BF02949318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949318

Keywords

Navigation