Skip to main content
Log in

Oxidative Stress and the Myelodysplastic Syndromes

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The evolution of higher organisms from anaerobic to aerobic living has promoted an elaborate mechanism of defense against potentially toxic oxidants. Many environmental toxicants implicated in the pathogenesis of myelodysplastic syndromes (MDS), including benzene and ionizing radiation, exert toxicity via pro-oxidant mechanisms. The emerging data suggest a probable genetic susceptibility to environmental carcinogenesis through functional polymorphic variants in enzymes that metabolize toxicants and/or protect against oxidative stress. The most studied enzyme is NAD(P)H:quinone oxidoreductase (NQO1). CD34+ cells from individuals homozygous for the NQO1 C609T nonfunctional allelic variant are incapable of enzyme induction following exposure to benzene, thus potentially increasing the hematotoxicity of benzene metabolites. Serologic and molecular markers of oxidative stress are present in many patients with MDS and include an increased concentration of the lipid peroxidation product malondialdehyde and the presence of oxidized bases in CD34+ cells. Potential mechanisms of oxidative stress include mitochondrial dysfunction via iron overload and mitochondrial DNA mutation, systemic inflammation, and bone marrow stromal defects. The biological activity of the antioxidant aminothiol amifostine in vivo suggests that these pathways may be meaningful targets for future therapy in MDS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Greenberg P, Cox C, Lebeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes.Blood. 1997;89:2079–2088.

    CAS  PubMed  Google Scholar 

  2. Bennett JM, Catovsky MT, Daniel G, Flandrin DAG, Galton HR, Sultan C. Proposals for the classification of the myelodysplastic syndromes.Br J Haematol. 1982;51:189–199.

    Article  CAS  PubMed  Google Scholar 

  3. Bennett JM. World Health Organization classification of the acute leukemias and myelodysplastic syndrome.Int J Hematol. 2000;72:131–133.

    PubMed  CAS  Google Scholar 

  4. Geddes AA, Bowen DT, Jacobs A. Clonal karyotype abnormalities and clinical progress in the myelodysplastic syndrome.Br J Haematol. 1990;76:194–202.

    Article  CAS  PubMed  Google Scholar 

  5. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NFkappa B transcription factor and HIV-1.EMBO J. 1991;10:2247–2258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lewis CD, Laemmli UK. Higher order metaphase chromosome structure: evidence for metalloprotein interactions.Cell. 1982;29:171–181.

    Article  CAS  PubMed  Google Scholar 

  7. Davies KJ. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress.IUBMB Life. 1999;48:41–47.

    Article  CAS  PubMed  Google Scholar 

  8. Wink DA, Nims RW, Saavedra JE, Utermahlen WE Jr, Ford PC. The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical.Proc Natl Acad Sci U S A. 1994;91:6604–6608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dreher D, Junod AF. Role of oxygen free radicals in cancer development.Eur J Cancer. 1996;32A:30–38.

    Article  CAS  PubMed  Google Scholar 

  10. Rubbo H, Radi R, Trujillo M, et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: formation of novel nitrogen-containing oxidized lipid derivatives.J Biol Chem. 1994;269:26066–26075.

    PubMed  CAS  Google Scholar 

  11. Takahashi T, Nau MM, Chiba I, et al. p53: a frequent target for genetic abnormalities in lung cancer.Science. 1989;246:491–494.

    Article  CAS  PubMed  Google Scholar 

  12. Bos JL. The ras gene family and human carcinogenesis.Mutat Res. 1988;195:255–271.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson RM, Goyette G Jr, Ravindranath Y, Ho YS. Oxidation of glutathione peroxidase-deficient red cells by organic peroxides.Blood. 2002;100:1515–1516.

    Article  CAS  PubMed  Google Scholar 

  14. Bowen DT, Frew ME, Kerr R, Groves M, Wang L. Antioxidant enzyme expression is upregulated in myelodysplastic granulocytes, CD34+ and mononuclear bone marrow fractions: further evidence for oxidative stress in the pathogenesis of myelodysplasia [abstract].Leuk Res. 2001;25(suppl 1):S56.

    Google Scholar 

  15. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing.Nature. 2000;408:239–247.

    Article  CAS  PubMed  Google Scholar 

  16. Wolf FI, Torsello A, Covacci V, et al. Oxidative DNA damage as a marker of aging in WI-38 human fibroblasts.Exp Gerontol. 2002;37:647–656.

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton ML, Van Remmen H, Drake JA, et al. Does oxidative damage to DNA increase with age?Proc Natl Acad Sci U S A. 2001;98:10469–10474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo Z, Heydari A, Richardson A. Nucleotide excision repair of actively transcribed versus nontranscribed DNA in rat hepatocytes: effect of age and dietary restriction.Exp Cell Res. 1998;245:228–238.

    Article  CAS  PubMed  Google Scholar 

  19. Kuga T, Sakamaki S, Matsunaga T, et al. Fibronectin fragment-facilitated retroviral transfer of the glutathione-S-transferase pi gene into CD34+ cells to protect them against alkylating agents.Hum Gene Ther. 1997;8:1901–1910.

    Article  CAS  PubMed  Google Scholar 

  20. Aul C, Giagounidis A, Germing U. Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics.Int J Hematol. 2001;73:405–410.

    Article  CAS  PubMed  Google Scholar 

  21. Van den Berghe H, Michaux L. 5q—, twenty-five years later: a synopsis.Cancer Genet Cytogenet. 1997;94:1–7.

    Article  PubMed  Google Scholar 

  22. Mauritzson N, Albin M, Rylander L, et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976–1993 and on 5098 unselected cases reported in the literature 1974–2001.Leukemia. 2002;16:2366–2378.

    Article  CAS  PubMed  Google Scholar 

  23. Mele A, Szklo M, Visani G, et al. Hair dye use and other risk factors for leukemia and pre- leukemia: a case-control study: Italian Leukemia Study Group.Am J Epidemiol. 1994;139:609–619.

    Article  CAS  PubMed  Google Scholar 

  24. Bjork J, Albin M, Mauritzson N, Stromberg U, Johansson B, Hagmar L. Smoking and myelodysplastic syndromes.Epidemiology. 2000;11:285–291.

    Article  CAS  PubMed  Google Scholar 

  25. Ido M, Nagata C, Kawakami N, et al. A case-control study of myelodysplastic syndromes among Japanese men and women.Leuk Res. 1996;20:727–731.

    Article  CAS  PubMed  Google Scholar 

  26. Nisse C, Haguenoer JM, Grandbastien B, et al. Occupational and environmental risk factors of the myelodysplastic syndromes in the North of France.Br J Haematol. 2001;112:927–935.

    Article  CAS  PubMed  Google Scholar 

  27. West RR, Stafford DA, Farrow A, Jacobs A. Occupational and environmental exposures and myelodysplasia: a case-control study.Leuk Res. 1995;19:127–139.

    Article  CAS  PubMed  Google Scholar 

  28. West RR, Stafford DA, White AD, Bowen DT, Padua RA. Cytogenetic abnormalities in the myelodysplastic syndromes and occupational or environmental exposure.Blood. 2000;95:2093–2097.

    PubMed  CAS  Google Scholar 

  29. Rigolin GM, Cuneo A, Roberti MG, et al. Exposure to myelotoxic agents and myelodysplasia: case-control study and correlation with clinicobiological findings.Br J Haematol. 1998;103:189–197.

    Article  CAS  PubMed  Google Scholar 

  30. Aksoy M, Dincol K, Erdem S, Dincol G. Acute leukemia due to chronic exposure to benzene.Am J Med. 1972;52:160–166.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Robertson ML, Kolachana P, Davison AJ, Smith MT. Benzene metabolite, 1,2,4-benzenetriol, induces micronuclei and oxidative DNA damage in human lymphocytes and HL60 cells.Environ Mol Mutagen. 1993;21:339–348.

    Article  CAS  PubMed  Google Scholar 

  32. Ross D. Metabolic basis of benzene toxicity.Eur J Haematol. 1996;57:111–118.

    Article  Google Scholar 

  33. Siegel D, Ryder J, Ross D. NAD(P)H: quinone oxidoreductase 1 expression in human bone marrow endothelial cells.Toxicol Lett. 2001;125:93–98.

    Article  CAS  PubMed  Google Scholar 

  34. Czerwinski M, Kiem HP, Slattery JT. Human CD34+ cells do not express glutathione S-transferases alpha.Gene Ther. 1997;4:268–270.

    Article  CAS  PubMed  Google Scholar 

  35. Mitsui A, Hamuro J, Nakamura H, et al. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span.Antioxid Redox Signal. 2002;4:693–696.

    Article  CAS  PubMed  Google Scholar 

  36. Kimura A, Takeuchi Y, Tanaka H, Satoh K, Ohtaki M, Hayakawa N. Atomic bomb radiation enhances the risk of MDS [abstract].Leuk Res. 2001;25(suppl 1):S13.

    Google Scholar 

  37. Matsuo T, Tomonaga M, Bennett JM, et al. Reclassification of leukemia among A-bomb survivors in Nagasaki using French-American-British (FAB) classification for acute leukemia.Jpn J Clin Oncol. 1988;18:91–96.

    PubMed  CAS  Google Scholar 

  38. Neriishi K, Nakashima E, Delongchamp RR. Persistent subclinical inflammation among A-bomb survivors.Int J Radiat Biol. 2001;77:475–482.

    Article  CAS  PubMed  Google Scholar 

  39. Lorimore SA, Kadhim MA, Pocock DA, et al. Chromosomal instability in the descendants of unirradiated surviving cells after alphaparticle irradiation.Proc Natl Acad Sci U S A. 1998;95:5730–5733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lorimore SA, Coates PJ, Scobie GE, Milne G, Wright EG. Inflammatorytype responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects?Oncogene. 2001;20:7085–7095.

    Article  CAS  PubMed  Google Scholar 

  41. Smith MT, Wang Y, Kane E, et al. Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults.Blood. 2001;97:1422–1426.

    Article  CAS  PubMed  Google Scholar 

  42. Allan JM, Wild CP, Rollinson S, et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapyinduced leukemia.Proc Natl Acad Sci U S A. 2001;98:11592–11597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rothman N, Smith MT, Hayes RB, et al. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1609C→T mutation and rapid fractional excretion of chlorzoxazone.Cancer Res. 1997;57:2839–2842.

    PubMed  CAS  Google Scholar 

  44. Moran JL, Siegel D, Ross D. A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity.Proc Natl Acad Sci U S A. 1999;96:8150–8155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seedhouse C, Bainton R, Lewis M, Harding A, Russell N, Das-Gupta E. The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapyrelated acute myeloblastic leukemia.Blood. 2002;100:3761–3766.

    Article  CAS  PubMed  Google Scholar 

  46. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS.Blood. 2000;96:3932–3938.

    PubMed  CAS  Google Scholar 

  47. Cortelezzi A, Cattaneo C, Cristiani S, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis?Hematol J. 2000;1:153–158.

    Article  CAS  PubMed  Google Scholar 

  48. Peddie CM, Wolf CR, McLellan LI, Collins AR, Bowen DT. Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-alpha concentration.Br J Haematol. 1997;99:625–631.

    Article  CAS  PubMed  Google Scholar 

  49. Cortelezzi A, Cattaneo C, Sarina B, et al. Efficacy of N-acetylcysteine and all-trans retinoic acid in restoring in vitro effective hemopoiesis in myelodysplastic syndromes [see comments].Leuk Res. 2000;24:129–137.

    Article  CAS  PubMed  Google Scholar 

  50. List A, Heaton R, Glinsmann-Gibson B. Amifostine stimulates formation of multipotent progenitors and generates macroscopic colonies in normal and myelodysplastic bone marrow [abstract].Am Soc Clin Oncol. 1996;15:449.

    Google Scholar 

  51. List AF, Heaton R, Glinsmann-Gibson B, Capizzi RL. Amifostine protects primitive hematopoietic progenitors against chemotherapy cytotoxicity.Semin Oncol. 1996;23(suppl 8):58–63.

    PubMed  CAS  Google Scholar 

  52. List AF, Heaton R, Glinsmann-Gibson B, Capizzi RL. Amifostine stimulates formation of multipotent and erythroid bone marrow progenitors.Leukemia. 1998;12:1596–1602.

    Article  CAS  PubMed  Google Scholar 

  53. May A, de Souza P, Barnes K, Kaaba S, Jacobs A. Erythroblast iron metabolism in sideroblastic marrows.Br J Haematol. 1982;52:611–621.

    Article  CAS  PubMed  Google Scholar 

  54. Jensen PD, Heickendorff L, Pedersen B, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload.Br J Haematol. 1996;94:288–299.

    Article  CAS  PubMed  Google Scholar 

  55. Cotter PD, Rucknagel DL, Bishop DF. X-linked sideroblastic anemia: identification of the mutation in the erythroid-specific deltaaminolevulinate synthase gene (ALAS2) in the original family described by Cooley.Blood. 1994;84:3915–3924.

    PubMed  CAS  Google Scholar 

  56. Bowen D, Peddie C. Mitochondrial oxygen consumption and ineffective haematopoiesis in patients with myelodysplastic syndromes.Br J Haematol. 2002;118:345–346.

    Article  PubMed  Google Scholar 

  57. Matthes TW, Meyer G, Samii K, Beris P. Increased apoptosis in acquired sideroblastic anaemia.Br J Haematol. 2000;111:843–852.

    PubMed  CAS  Google Scholar 

  58. Tehranchi R, Fadeel B, Forsblom AM, et al. Granulocyte colonystimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors.Blood. 2003;101:1080–1086.

    Article  CAS  PubMed  Google Scholar 

  59. Gattermann N. From sideroblastic anemia to the role of mitochondrial DNA mutations in myelodysplastic syndromes.Leuk Res. 2000;24:141–151.

    Article  CAS  PubMed  Google Scholar 

  60. Shin MG, Kajigaya S, Levin BC, Young NS. Mitochondrial DNA mutations in patients with myelodysplastic syndromes.Blood. In press.

  61. Symeonidis A, Kourakli A, Katevas P, et al. Immune function parameters at diagnosis in patients with myelodysplastic syndromes: correlation with the FAB classification and prognosis.Eur J Haematol. 1991;47:277–281.

    Article  CAS  PubMed  Google Scholar 

  62. Mufti GJ, Figes A, Hamblin TJ, Oscier DG, Copplestone JA. Immunological abnormalities in myelodysplastic syndromes, I: serum immunoglobulins and autoantibodies.Br J Haematol. 1986;63:143–147.

    Article  CAS  PubMed  Google Scholar 

  63. Molldrem JJ, Leifer E, Bahceci E, et al. Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes.Ann Intern Med. 2002;137:156–163.

    Article  PubMed  Google Scholar 

  64. Jonásova A, Neuwirtová R, Cermák J, et al. Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow.Br J Haematol. 1998;100:304–309.

    Article  PubMed  Google Scholar 

  65. Molldrem JJ, Jiang YZ, Stetlerstevenson M, Mavroudis D, Hensel N, Barrett AJ. Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor V-beta profiles.Br J Haematol. 1998;102:1314–1322.

    Article  CAS  PubMed  Google Scholar 

  66. Verhoef GEG, De Schouwer P, Ceuppens JL, Van Damme J, Gooseens W, Boogaerts MA. Measurement of serum cytokine levels in patients with myelodysplastic syndromes.Leukemia. 1992;6:1268–1272.

    PubMed  CAS  Google Scholar 

  67. Allampallam K, Shetty V, Mundle S, et al. Biological significance of proliferation, apoptosis, cytokines, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome.Int J Hematol. 2002;75:289–297.

    Article  CAS  PubMed  Google Scholar 

  68. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS. Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia.Br J Haematol. 1995;91:245–252.

    Article  CAS  PubMed  Google Scholar 

  69. Sloand EM, Kim S, Fuhrer M, et al. Fas-mediated apoptosis is important in regulating cell replication and death in trisomy 8 hematopoietic cells but not in cells with other cytogenetic abnormalities.Blood. 2002;100:4427–4432.

    Article  CAS  PubMed  Google Scholar 

  70. Selleri C, Sato T, Raiola AM, Rotoli B, Young NS, Maciejewski JP. Induction of nitric oxide synthase is involved in the mechanism of Fas-mediated apoptosis in haemopoietic cells.Br J Haematol. 1997;99:481–489.

    Article  CAS  PubMed  Google Scholar 

  71. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide.Cell. 1994;78:931–936.

    Article  CAS  PubMed  Google Scholar 

  72. Maciejewski JP, Selleri C, Sato T, et al. Nitric oxide suppression of human hematopoiesis in vitro: contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha.J Clin Invest. 1995;96:1085–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kitagawa M, Kamiyama R, Kasuga T. Increase in number of bonemarrow macrophages in patients with myelodysplastic syndromes.Eur J Haematol. 1993;51:56–58.

    Article  CAS  PubMed  Google Scholar 

  74. Kitagawa M, Takahashi M, Yamaguchi S, et al. Expression of inducible nitric oxide synthase (NOS) in bone marrow cells of myelodysplastic syndromes.Leukemia. 1999;13:699–703.

    Article  CAS  PubMed  Google Scholar 

  75. Alvi S, Shaher A, Shetty V, et al. Successful establishment of longterm bone marrow cultures in 103 patients with myelodysplastic syndromes.Leuk Res. 2001;25:941–954.

    Article  CAS  PubMed  Google Scholar 

  76. Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, Arana-Trejo RM, Mayani H. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome.Leuk Res. 2002;26:677–686.

    Article  CAS  PubMed  Google Scholar 

  77. Tauro S, Hepburn MD, Bowen DT, Pippard MJ. Assessment of stromal function, and its potential contribution to deregulation of hematopoiesis in the myelodysplastic syndromes.Haematologica. 2001;86:1038–1045.

    PubMed  CAS  Google Scholar 

  78. Deeg HJ, Beckham C, Loken MR, et al. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome.Leuk Lymphoma. 2000;37:405–414.

    Article  PubMed  CAS  Google Scholar 

  79. Heidel SM, Czuprynski CJ, Jefcoate CR. Bone marrow stromal cells constitutively express high levels of cytochrome P4501B1 that metabolize 7,12-dimethylbenz[a]anthracene.Mol Pharmacol. 1998;54:1000–1006.

    Article  CAS  PubMed  Google Scholar 

  80. Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow.Blood. 2002;100:3553–3560.

    Article  CAS  PubMed  Google Scholar 

  81. List AF, Brasfield F, Heaton R, et al. Stimulation of hematopoiesis by amifostine in patients with myelodysplastic syndrome.Blood. 1997;90:3364–3369.

    PubMed  CAS  Google Scholar 

  82. Deeg HJ, Gotlib J, Beckham C, et al. Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study.Leukemia. 2002;16:162–164.

    Article  CAS  PubMed  Google Scholar 

  83. Maciejewski JP, Risitano AM, Sloand EM, et al. A pilot study of the recombinant soluble human tumour necrosis factor receptor (p75)-Fc fusion protein in patients with myelodysplastic syndrome.Br J Haematol. 2002;117:119–126.

    Article  CAS  PubMed  Google Scholar 

  84. Raza A, Meyer P, Dutt D, et al. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes.Blood. 2001;98:958–965.

    Article  CAS  PubMed  Google Scholar 

  85. Lensch MW, Rathbun RK, Olson SB, Jones GR, Bagby GC Jr. Selective pressure as an essential force in molecular evolution of myeloid leukemic clones: a view from the window of Fanconi anemia.Leukemia. 1999;13:1784–1789.

    Article  CAS  PubMed  Google Scholar 

  86. D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway.Nat Rev Cancer. 2003;3:23–34.

    Article  CAS  PubMed  Google Scholar 

  87. Degan P, Bonassi S, De Caterina M, et al. In vivo accumulation of 8-hydroxy-2Ä-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families.Carcinogenesis. 1995;16:735–741.

    Article  CAS  PubMed  Google Scholar 

  88. Notaro R, Montuori N, di Grazia C, Formisano S, Rotoli B, Selleri C. Fanconi’s anemia cells are relatively resistant to H2O2-induced damage.Haematologica. 1998;83:868–874.

    PubMed  CAS  Google Scholar 

  89. Horikawa K, Nakakuma H, Kawaguchi T, et al. Apoptosis resistance of blood cells from patients with paroxysmal nocturnal hemoglobinuria, aplastic anemia, and myelodysplastic syndrome.Blood. 1997;90:2716–2722.

    PubMed  CAS  Google Scholar 

  90. Le Page F, Randrianarison V, Marot D, et al. BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells.Cancer Res. 2000;60:5548–5552.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Bowen.

About this article

Cite this article

Farquhar, M.J., Bowen, D.T. Oxidative Stress and the Myelodysplastic Syndromes. Int J Hematol 77, 342–350 (2003). https://doi.org/10.1007/BF02982641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982641

Key words

Navigation