Skip to main content
Log in

Survival and Proliferation Factors of Normal and Malignant Plasma Cells

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Since the first identification of interleukin (IL)-6 as a myeloma cell growth factor by Dr. Kawano’s and Dr. Klein’s groups 14 years ago, numerous studies have emphasized its major roles in the emergence of malignant plasma cells in vivo and in the generation of normal plasma cells. Four transcription factors control B-cell differentiation into plasma cells. The B-cell transcription factor pax-5 is mainly responsible for a B-cell phenotype, andbcl-6 represses the plasma cell transcription factor blimp-1 and plasma cell differentiation.bcl-6 expression is triggered by CD40 and IL-4 activation. A lack of CD40 and IL-4 activation yields a down-regulation ofbcl-6 expression, and IL-6 stimulation yields an up-regulation of blimp-1, mainly through STAT3 activation. Blimp-1 further down-regulatesbcl-6 andpax-5 expression and makes plasma cell differentiation possible. IL-6 as well as IL-10 up-regulate XBP-1. XBP-1 is another transcription factor that is involved in plasma cell differentiation and whose gene expression is shut down by pax-5.The plasma cell transcription factors blimp-1 and XBP-1 are up-regulated, and the B-cell transcription factors bcl-6 and pax-5 are down-regulated, in malignant cells compared to B-cells. Apart from the recent identification of these 4 transcription factors, the factors involved in normal plasma cell generation are mostly unknown. Regarding malignant plasma cells, 3 categories of growth factors have been identified: (1) the IL-6 family cytokines, IL-10, and interferon α that activate the Janus kinase—signal transducer and activator of transcription (JAK/STAT) and mitogen-activated protein (MAP) kinase pathways; (2) growth factors activating the phosphatidylinositol (PI)-3 kinase/AKT and MAP kinase pathways, unlike the JAK/STAT pathway (insulin-like growth factor 1, hepatocyte growth factor, and members of the epidermal growth factor family able to bind syndecan-1 proteoglycan); and (3) B-cell—activating factor (BAFF) or proliferationinducing ligand (APRIL) that activate the nuclear factor κB and PI-3 kinase/AKT pathways.BAFF and APRIL bind to BAFF receptor and TACI and are major B-cell survival factors. Recent data indicate that these various growth factors may cooperate to provide optimum signaling because they are localized together and with cytoplasmic transduction elements in caveolinlinked membrane caveolae. The identification of these myeloma cell growth factors and of the associated transduction pathways should provide novel therapeutic targets in multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jego G, Robillard N, Puthier D, et al. Reactive plasmacytoses are expansions of plasmablasts retaining the capacity to differentiate into plasma cells.Blood. 1999;94:701–712.

    PubMed  CAS  Google Scholar 

  2. Tarte K, De Vos J, Thykjaer T, et al. Generation of polyclonal plasmablasts from peripheral blood B cells: a normal counterpart of malignant plasmablasts.Blood. 2002;100:1113–1122.

    PubMed  CAS  Google Scholar 

  3. Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells.Annu Rev Immunol. 2003;21:205–230.

    Article  PubMed  CAS  Google Scholar 

  4. Jung J, Choe J, Li L, Choi YS. Regulation of CD27 expression in the course of germinal center B cell differentiation: the pivotal role of IL-10.Eur J Immunol. 2000;30:2437–2443.

    Article  PubMed  CAS  Google Scholar 

  5. Agematsu K, Nagumo H, Oguchi Y, et al. Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction.Blood. 1998;91:173–180.

    PubMed  CAS  Google Scholar 

  6. Yamasaki K, Taga T, Hirata Y, et al. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor.Science. 1988;241:825–828.

    Article  PubMed  CAS  Google Scholar 

  7. Suematsu S, Matsuda T, Aozasa K, et al. IgG1 plasmacytosis in interleukin 6 transgenic mice.Proc Natl Acad Sci U S A. 1989;86:7547–7551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kopf M, Baumann H, Freer G, et al. Impaired immune and acutephase responses in interleukin-6-deficient mice.Nature. 1994;368:339–342.

    Article  PubMed  CAS  Google Scholar 

  9. Wen XY, Stewart AK, Sooknanan RR, et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells.Int J Oncol. 1999;15:173–178.

    PubMed  CAS  Google Scholar 

  10. Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1.Nature. 2001;412:300–307.

    Article  PubMed  CAS  Google Scholar 

  11. Hirano T. Interleukin 6 and its receptor: ten years later.Int Rev Immunol. 1998;16:249–284.

    Article  PubMed  CAS  Google Scholar 

  12. Kawano M, Hirano T, Matsuda T, et al. Autocrine generation and essential requirement of BSF-2/IL-6 for human multiple myeloma.Nature. 1988;332:83–85.

    Article  PubMed  CAS  Google Scholar 

  13. Klein B, Zhang XG, Jourdan M, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6.Blood. 1989;73:517–526.

    PubMed  CAS  Google Scholar 

  14. Zhang XG, Bataille R, Widjenes J, Klein B. Interleukin-6 dependence of advanced malignant plasma cell dyscrasias.Cancer. 1992;69:1373–1376.

    Article  PubMed  CAS  Google Scholar 

  15. Klein B, Wijdenes J, Zhang XG, et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia.Blood. 1991;78:1198–1204.

    PubMed  CAS  Google Scholar 

  16. Bataille R, Barlogie B, Lu ZY, et al. Biologic effects of antiinterleukin-6 (IL-6) murine monoclonal antibody in advanced multiple myeloma.Blood. 1995;86:685–691.

    PubMed  CAS  Google Scholar 

  17. Lu ZY, Brailly H, Wijdenes J, Bataille R, Rossi JF, Klein B. Measurement of whole body interleukin-6 (IL-6) production: prediction of the efficacy of anti-IL-6 treatments.Blood. 1995;86:3123–3131.

    PubMed  CAS  Google Scholar 

  18. Bataille R, Jourdan M, Zhang XG, Klein B. Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflection of disease severity in plasma cell dyscrasias.J Clin Invest. 1989;84:2008–2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gaillard JP, Bataille R, Brailly H, et al. Increased and highly stable levels of functional soluble interleukin-6 receptor in sera of patients with monoclonal gammopathy.Eur J Immunol. 1993;23:820–824.

    Article  PubMed  CAS  Google Scholar 

  20. Portier M, Rajzbaum G, Zhang XG, et al. In vivo interleukin-6 gene expression in the tumoral environment in multiple myeloma.Eur J Immunol. 1991;21:1759–1762.

    Article  PubMed  CAS  Google Scholar 

  21. Costes V, Portier M, Lu ZY, Rossi JF, Bataille R, Klein B. Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production.Br J Haematol. 1998;103:1152–1160.

    Article  PubMed  CAS  Google Scholar 

  22. Hinson RM, Williams JA, Shacter E. Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2.Proc Natl Acad Sci U S A. 1996;93:4885–4890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion.Blood. 1993;82:3712–3720.

    PubMed  CAS  Google Scholar 

  24. Lokhorst HM, Lamme T, de Smet M, et al. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures.Blood. 1994;84:2269–2277.

    PubMed  CAS  Google Scholar 

  25. Zhang XG, Gaillard JP, Robillard N, et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma.Blood. 1994;83:3654–3663.

    PubMed  CAS  Google Scholar 

  26. Suematsu S, Matsuda T, Aozasa K, et al. IgG1 plasmacytosis in interleukin-6 transgenic mice.Proc Natl Acad Sci U S A. 1989;86:7547–7551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Suematsu S, Matsusaka T, Matsuda T, et al. Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice.Proc Natl Acad Sci U S A. 1992;89:232–235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lattanzio G, Libert C, Aquilina M, et al. Defective development of pristane-oil-induced plasmacytomas in interleukin-6-deficient BALB/c mice.Am J Pathol. 1997;151:689–696.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang XG, Gu ZJ, Lu ZY, et al. Ciliary neurotropic factor, interleukin 11, leukemia inhibitory factor, and oncostatin M are growth factors for human myeloma cell lines using the interleukin 6 signal transducer gp130.J Exp Med. 1994;179:1337–1342.

    Article  PubMed  CAS  Google Scholar 

  30. Klein B. Growth factors in the pathogenesis of multiple myeloma. In: Garthon L, Durie BGM, eds.Multiple Myeloma. London: Edward Arnold Publishers; 1996:73–82.

    Google Scholar 

  31. Jourdan M, Zhang XG, Portier M, Boiron JM, Bataille R, Klein B. IFN-alpha induced autocrine production of IL-6 in myeloma cell lines.J Immunol. 1991;147:4402–4407.

    PubMed  CAS  Google Scholar 

  32. Ferlin-Bezombes M, Jourdan M, Liautard J, Brochier J, Rossi JF, Klein B. IFN-alpha is a survival factor for human myeloma cells and reduces dexamethasone-induced apoptosis.J Immunol. 1998;161:2692–2699.

    PubMed  CAS  Google Scholar 

  33. Arora T, Jelinek DF. Differential myeloma cell responsiveness to interferon-alpha correlates with differential induction of p19(INK4d) and cyclin D2 expression.J Biol Chem. 1998;273:11799–11805.

    Article  PubMed  CAS  Google Scholar 

  34. Lu ZY, Zhang XG, Wijdenes J, et al. Interleukin-10 is a growth factor for human myeloma cells.Blood. 1995;85:2521–2527.

    PubMed  CAS  Google Scholar 

  35. Gu ZJ, Costes V, Lu ZY, et al. Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop.Blood. 1996;88:3972–3986.

    PubMed  CAS  Google Scholar 

  36. De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B. JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogenactivated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells.Br J Haematol. 2000;109:823–828.

    Article  PubMed  Google Scholar 

  37. Jourdan M,Vos JD, Mechti N, Klein B. Regulation of Bcl-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1.Cell Death Differ. 2000;7:1244–1252.

    Article  PubMed  CAS  Google Scholar 

  38. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells.Immunity. 1999;10:105–115.

    Article  PubMed  CAS  Google Scholar 

  39. Puthier D, Derenne S, Barille S, et al. Mcl-1 and bcl-xL are co-regulated by IL-6 in human myeloma cells.Br J Haematol. 1999;107:392–395.

    Article  PubMed  CAS  Google Scholar 

  40. Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells.Blood. 2002;100:194–199.

    Article  PubMed  CAS  Google Scholar 

  41. Jourdan M, Veyrune JL, Vos JD, Redal N, Couderc G, Klein B. A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells.Oncogene. 2003;22:2950–2959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/ AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses.Cancer Res. 2000;60:6763–6770.

    PubMed  CAS  Google Scholar 

  43. Pfeffer LM, Mullersman JE, Pfeffer SR, Murti A, Shi W, Yang CH. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor.Science. 1997;276:1418–1420.

    Article  PubMed  CAS  Google Scholar 

  44. Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications.Oncogene. 2002;21:5673–5683.

    Article  PubMed  CAS  Google Scholar 

  45. Qiang YW, Kopantzev E, Rudikoff S. Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk.Blood. 2002;99:4138–4146.

    Article  PubMed  CAS  Google Scholar 

  46. Pene F, Claessens YE, Muller O, et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma.Oncogene. 2002;21:6587–6597.

    Article  PubMed  CAS  Google Scholar 

  47. Georgii-Hemming P, Wiklund HJ, Ljunggren O, Nilsson K. Insulinlike growth factor I is a growth and survival factor in human multiple myeloma cell lines.Blood. 1996;88:2250–2258.

    PubMed  CAS  Google Scholar 

  48. Jelinek DF, Witzig TE, Arendt BK. A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth.J Immunol. 1997;159:487–496.

    PubMed  CAS  Google Scholar 

  49. Ferlin M, Noraz N, Hertogh C, Brochier J, Taylor N, Klein B. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway.Br J Haematol. 2000;111:626–634.

    Article  PubMed  CAS  Google Scholar 

  50. Ge NL, Rudikoff S. Insulin-like growth factor I is a dual effector of multiple myeloma cell growth.Blood. 2000;96:2856–2861.

    PubMed  CAS  Google Scholar 

  51. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma.Oncogene. 2001;20:5991–6000.

    Article  PubMed  CAS  Google Scholar 

  52. Hsu JH, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A. Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses.Oncogene. 2002;21:1391–1400.

    Article  PubMed  CAS  Google Scholar 

  53. Ge NL, Rudikoff S. Expression of PTEN in PTEN-deficient multiple myeloma cells abolishes tumor growth in vivo.Oncogene. 2000;19:4091–4095.

    Article  PubMed  CAS  Google Scholar 

  54. Standal T, Borset M, Lenhoff S, et al. Serum insulinlike growth factor is not elevated in patients with multiple myeloma but is still a prognostic factor.Blood. 2002;100:3925–3929.

    Article  PubMed  CAS  Google Scholar 

  55. Duan C. Specifying the cellular responses to IGF signals: roles of IGF-binding proteins.J Endocrinol. 2002;175:41–54.

    Article  PubMed  CAS  Google Scholar 

  56. De Vos J, Couderc G, Tarte K, et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays.Blood. 2001;98:771–780.

    Article  PubMed  Google Scholar 

  57. Wijdenes J, Vooijs WC, Clement C, et al. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1.Br J Haematol. 1996;94:318–323.

    Article  PubMed  CAS  Google Scholar 

  58. Costes V, Magen V, Legouffe E, et al. The Mi15 monoclonal antibody (anti-syndecan-1) is a reliable marker for quantifying plasma cells in paraffin-embedded bone marrow biopsy specimens.Hum Pathol. 1999;30:1405–1411.

    Article  PubMed  CAS  Google Scholar 

  59. Zimmermann P, David G. The syndecans, tuners of transmembrane signaling.Faseb J. 1999;13:S91-S100.

    Article  PubMed  CAS  Google Scholar 

  60. Wang YD, De Vos J, Jourdan M, et al. Cooperation between heparin-binding EGF-like growth factor and interleukin-6 in promoting the growth of human myeloma cells.Oncogene. 2002;21:2584–2592.

    Article  PubMed  CAS  Google Scholar 

  61. Davis-Fleischer KM, Besner GE. Structure and function of heparin-binding EGF-like growth factor (HB-EGF).Front Biosci. 1998;3:d288–299.

    Article  PubMed  CAS  Google Scholar 

  62. Normanno N, Bianco C, De Luca A, Salomon DS. The role of EGFrelated peptides in tumor growth.Front Biosci. 2001;6:D685–707.

    Article  PubMed  CAS  Google Scholar 

  63. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy.Oncogene. 2000;19:6550–6565.

    Article  PubMed  CAS  Google Scholar 

  64. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma.Blood. 2002;99:1405–1410.

    Article  PubMed  CAS  Google Scholar 

  65. Seidel C, Borset M,Turesson I, Abildgaard N, Sundan A, Waage A. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group.Blood. 1998;91:806–812.

    PubMed  CAS  Google Scholar 

  66. Hjertner O, Torgersen ML, Seidel C, et al. Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease.Blood. 1999;94:3883–3888.

    PubMed  CAS  Google Scholar 

  67. Avet-Loiseau H, Li JY, Facon T, et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies.Cancer Res. 1998;58:5640–5645.

    PubMed  CAS  Google Scholar 

  68. Rasmussen T, Hudlebusch HR, Knudsen LM, Johnsen HE. FGFR3 dysregulation in multiple myeloma: frequency and prognostic relevance.Br J Haematol. 2002;117:626–628.

    Article  PubMed  CAS  Google Scholar 

  69. Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3.Nat Genet. 1997;16:260–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sato N, Hattori Y, Wenlin D, et al. Elevated level of plasma basic fibroblast growth factor in multiple myeloma correlates with increased disease activity.Jpn J Cancer Res. 2002;93:459–466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation.Mol Biol Cell. 2001;12:931–942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chesi M, Brents LA, Ely SA, et al. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma.Blood. 2001;97:729–736.

    Article  PubMed  CAS  Google Scholar 

  73. Pollett JB, Trudel S, Stern D, Li ZH, Stewart AK. Overexpression of the myeloma-associated oncogene fibroblast growth factor receptor 3 confers dexamethasone resistance.Blood. 2002;100:3819–3821.

    Article  PubMed  CAS  Google Scholar 

  74. Mackay F, Kalled SL. TNF ligands and receptors in autoimmunity: an update.Curr Opin Immunol. 2002;14:783–790.

    Article  PubMed  CAS  Google Scholar 

  75. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells.Nat Rev Immunol. 2002;2:465–475.

    Article  PubMed  CAS  Google Scholar 

  76. Claudio JO, Masih-Khan E, Tang H, et al. A molecular compendium of genes expressed in multiple myeloma.Blood. 2002;100:2175–2186.

    Article  PubMed  CAS  Google Scholar 

  77. Tarte K, Moreaux J, Legouffe E, Rossi JF, Klein B. BAFF is a survival factor for multiple myeloma cells.Blood. 2002

  78. French JD, Walters DK, Jelinek DF. Transactivation of gp130 in myeloma cells.J Immunol. 2003;170:3717–3723.

    Article  PubMed  CAS  Google Scholar 

  79. Walters DK, French JD, Arendt BK, Jelinek DF. Atypical expression of ErbB3 in myeloma cells: cross-talk between ErbB3 and the interferon-alpha signaling complex.Oncogene. 2003;22:3598–3607.

    Article  PubMed  CAS  Google Scholar 

  80. Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.J Biol Chem. 2003;278:5794–5801.

    Article  PubMed  CAS  Google Scholar 

  81. Charrin S, Le Naour F, Oualid M, et al. The major CD9 and CD81 molecular partner. Identification and characterization of the complexes.J Biol Chem. 2001;276:14329–14337.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Klein.

About this article

Cite this article

Klein, B., Tarte, K., Jourdan, M. et al. Survival and Proliferation Factors of Normal and Malignant Plasma Cells. Int J Hematol 78, 106–113 (2003). https://doi.org/10.1007/BF02983377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983377

Key words

Navigation