Skip to main content
Log in

The Bisphosphonate Zoledronic Acid Induces Cytotoxicity in Human Myeloma Cell Lines with Enhancing Effects of Dexamethasone and Thalidomide

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Bisphosphonates have recently been introduced in the therapeutic armamentarium for long-term treatment of patients with multiple myeloma. These pyrophosphate analogs not only reduce the occurrence of skeletal events but also provide clinical benefit to patients and improve the survival of some of them. The existence of these capabilities raises the possibility that these compounds may have a direct antiproliferative effect on tumor cells. To investigate whether these drugs exert a direct antitumor effect, we exposed human myeloma cell lines ARH-77 and RPMI-8226 to increasing concentrations of zoledronic acid (ZOL) in vitro. A concentration- but not time-dependent cytotoxic effect was detected with drug treatment of ARH-77 and RPMI-8226 cell lines (30% and 60% at 48 hours and 38% and 62% at 72 hours, respectively, for 50µM of ZOL). Cytotoxicity was not due to ZOL-induced chelation of extracellular calcium as shown by control experiments with the calcium chelator ethylene glycol-bis(β-aminoethylether)-N,N,N’,N’-tetraacetic acid. Addition of the competitive inhibitor of the nitric oxide synthase Nω-nitro-L-arginine methyl ester did not modulate ZOL-induced cytotoxicity. However, a decrease in the number of apoptotic cells was detected when protein kinase C was inhibited by addition of staurosporine to ZOL-containing cultures. Cytotoxicity also was increased by addition of dexamethasone (Dex) and thalidomide (Thal) to ARH-77 and RPMI-8226 cultures. We demonstrated that exposing myeloma cell lines ARH-77 and RPMI-8226 to ZOL inhibits cell growth in a dose-dependent but not a time-dependent manner and that combination of Dex and Thal with ZOL induces apoptotic cell death, providing a rationale for potential applications in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleisch H. Bisphosphonates: pharmacology and use in the treatment of tumor-induced hypercalcaemic and metastatic bone disease.Drugs. 1991;42:919–944.

    Article  PubMed  CAS  Google Scholar 

  2. Berenson J, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma.N Engl J Med. 1996;334:488–493.

    Article  PubMed  CAS  Google Scholar 

  3. McCloskey E, MacLennan IC, Drayson MT, Chapman C, Dunn J, Kanis JA. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma.Br J Haematol. 1998;100: 317–325.

    Article  PubMed  CAS  Google Scholar 

  4. Lövik CWGM, van der Pluijm G, van der Wee-Pals LJA, Bloys van Treslong-de Groat H, Bijvoet OLM. Migration and phenotypic transformation of osteoclast precursors in to mature osteoclasts: the effect of a bisphosphonate.J Bone Miner Res. 1988;3:185–192.

    Google Scholar 

  5. Hughes DE, Mac Donald BR, Russel RGG, Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow.J Clin Invest. 1989;83:1930–1935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sato M, Grassor G, Endo N, et al. Bisphosphonate action: alen- dronate localization in rat bone and effects on osteoclast ultra- structure.J Clin Invest. 1991;88:2095–2105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Carano A, Teitelbaym SA, Konsek JD, Schlesinger PH, Blair HC. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro.J Clin Invest. 1990;85:456–461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yaccoby S, Pearse RN, Johnson CL, Barlogie B, Choi Y, Epstein J. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity.Br J Haematol. 2002;116:278–290.

    Article  PubMed  Google Scholar 

  9. Shipman CM, Rogers MJ, Apperley JF, Russel RGG, Croucher PI. Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity.Br J Haematol. 1997;98:665–672.

    Article  PubMed  CAS  Google Scholar 

  10. Aparicia A, Gardner A, Tu Y, Savage A, Berenson J, Lichtenstein A. In vitro cytoreductive effects on multiple myeloma cells induced by bisphosphonates.Leukemia. 1998;12:220–229.

    Article  CAS  Google Scholar 

  11. Shipman CM, Rogers MJ, Apperley JF, Russel RGG, Craucher PI. Anti-tumour activity of bisphosphonates in human myeloma cells.Leuk Lymphoma. 1998;32:129–138.

    Article  PubMed  CAS  Google Scholar 

  12. Berenson J, Lichtenstein A, Porter L, et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group.J Clin Oncol. 1998;16: 593–602.

    Article  PubMed  CAS  Google Scholar 

  13. Mundy GR,Yoneda T. Bisphosphonates as anticancer drugs.N Engl J Med. 1998;339:398–400.

    Article  PubMed  CAS  Google Scholar 

  14. Dhodapkar MV, Singh J, Mehta J, et al. Anti-myeloma activity of pamidronate in vivo.Br J Haematol. 1998;103:530–532.

    Article  PubMed  CAS  Google Scholar 

  15. Kunzmann V, Bauer E, Feurle J, WeiBinger F, Tony HP, Wilhelm M. Stimulation of T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma.Blood. 2000;96: 384–392.

    PubMed  CAS  Google Scholar 

  16. Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analog overcome drug resistance of human multiple myeloma cells to conventional therapy.Blood. 2000;96:2943–2950.

    PubMed  CAS  Google Scholar 

  17. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process.Blood. 1998;91:3–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Corral LG, Haslett PAJ, Muller GW. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogs that are potent inhibitors of TNF-α.J Immunol. 1999;163: 380–386.

    PubMed  CAS  Google Scholar 

  19. Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro.J Immunol Methods. 1990;131:165–172.

    Article  PubMed  CAS  Google Scholar 

  20. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi CA. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry.J Immunol Meth. 1991;139:271–279.

    Article  CAS  Google Scholar 

  21. Rogers MJ, Chilton KM, Caxon FP, Smith MO, Suri S, Russel GG. Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism.J Bone Miner Res. 1996;11:1482–1491.

    Article  PubMed  CAS  Google Scholar 

  22. Selander KS, Mönkkönen J, Karhukorpi EK, Harkönen P, Hannuniemi R, Vaananem K. Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages.Mol Pharmacol. 1996; 50:1127–1138.

    PubMed  CAS  Google Scholar 

  23. Darzynkiewicz Z, Bruno S, Del Bino G, et al. Features of apoptotic cells measured by flow cytometry.Cytometry. 1992;13:795–808.

    Article  PubMed  CAS  Google Scholar 

  24. Rogers MJ, Watts DJ, Russel RG, et al. Inhibitory effects of bisphosphonates on growth of amoebae of the cellular slime mold Dictyostelium discoideum.J Bone Miner Res. 1994;9:1029–1039.

    Article  PubMed  CAS  Google Scholar 

  25. Cecchini MG, Felix H, Fleisch H, Cooper PH. Effects of bisphosphonates on proliferation and viability of mouse bone marrow- derived macrophages.J Bone Miner Res. 1987;2:135–142.

    Article  PubMed  CAS  Google Scholar 

  26. Zaida M, Datta HK, Patchell A, Moonga B, Muclntyre I. Calcium- activated intracellular calcium elevation: a novel mechanism of osteoclast regulation.Biochem Biophys Res Commun. 1989;159: 68–71.

    Article  Google Scholar 

  27. Ning ZQ, Murphy JJ. Calcium ionophore-induced apoptosis of human B cells is preceded by the induced expression of early response genes.Eur J Immunol. 1993;23:3369–3372.

    Article  PubMed  CAS  Google Scholar 

  28. Ojeda F, Guarda MI, Maldonado C, Folch H. Protein kinase C involvement in thymocyte apoptosis induced by hydrocortisone.Cell Immunol. 1990;125:535–542.

    Article  PubMed  CAS  Google Scholar 

  29. Kameda T, Ishikawa H, Tustsni T. Detection and characterization of apoptosis in osteoclasts in vitro.Biochem Biophys Res Commun. 1995;207:753–760.

    Article  PubMed  CAS  Google Scholar 

  30. Sarih M, Sauvannavong V, Adam A. Nitric oxide synthase induces macrophage death by apoptosis.Biochem Biophys Res Commun. 1993;191:503–508.

    Article  PubMed  CAS  Google Scholar 

  31. Nyugen T, Brunson D, Crespi CI, Penman BW, Wishnok JS, Tannenbaum SR. DNA damage and mutation in human cells exposed to nitric oxide.Proc NatlAcad Sci USA. 1992;89:3030–3034.

    Article  Google Scholar 

  32. Davies EF, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cyto- toxicity in multiple myeloma.Blood. 2001;98:210–216.

    Article  PubMed  CAS  Google Scholar 

  33. Hatfill SJ, Fester ED, DeBeer DP, Bohm L. Induction of morphological differentiation in the human leukemic cell line K562 by exposure to thalidomide metabolites.Leuk Res. 1991;15:129–136.

    Article  PubMed  CAS  Google Scholar 

  34. Marks MG, Shi J, Fry MO, et al. Effects of putative hydroxylated thalidomide metabolites on blood vessel density in the chorioal- lantoic membrane (CAM) assay and on tumor and endothelial cell proliferation.Biol Pharm Bull. 2002;25:597–604.

    Article  PubMed  CAS  Google Scholar 

  35. Klein B, Zhang XG, Lu ZY, Bataille R. Interleukin-6 in human multiple myeloma.Blood. 1995;85:863–872.

    PubMed  CAS  Google Scholar 

  36. Hardin J, Macleod S, Grigorieva I, et al. Interleukin-6 prevents dexamethasone-induced myeloma cell death.Blood. 1994;84: 3063–3070.

    PubMed  CAS  Google Scholar 

  37. Raisz LG, Cooper RA, Schechter GP, Salmon S. Evidence for the secretion of an osteoclast stimulating factor in myeloma.N Engl J Med. 1974;291:1041–1046.

    Article  PubMed  Google Scholar 

  38. Savage AD, Belson DJ, Vescio RA, Lichtenstein AK, Berenson JR. Pamidronate reduces IL-6 production by bone marrow stroma from multiple myeloma patients [abstract].Blood. 1996; 88:105a.

    Google Scholar 

  39. Tassone P, Forciniti S, Galea E, et al. Growth inhibition and syner- gistic induction of apoptosis by zoledronate and dexamethasone in human myeloma cell lines.Leukemia. 2000;14:841–844.

    Article  PubMed  CAS  Google Scholar 

  40. Corral LG, Muller GW, Moreira AL, et al. Selection of novel analogs of thalidomide with enhanced tumor necrosis factor alpha inhibitory activity.Mol Med. 1996;2:506–515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ugur Ural.

About this article

Cite this article

Ural, A.U., Yilmaz, M.I., Avcu, F. et al. The Bisphosphonate Zoledronic Acid Induces Cytotoxicity in Human Myeloma Cell Lines with Enhancing Effects of Dexamethasone and Thalidomide. Int J Hematol 78, 443–449 (2003). https://doi.org/10.1007/BF02983818

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983818

Key words

Navigation