Skip to main content
Log in

Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O

  • Research Article
  • Research Articles: Air Pollution
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Absorption spectroscopy, which is widely used for concentration measurements of tropospheric and stratospheric compounds, requires precise values of the absorption cross-sections of the measured species. NO2, O2 and its collision-induced absorption spectrum, and H2O absorption cross-sections have been measured at temperature and pressure conditions prevailing in the Earth’s atmosphere. Corrections to the generally accepted analysis procedures used to resolve the convolution problem are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camy-Peyret, C.;Bergquist, B.;Galle, B.;Carleer, M.;Clerbaux, C.;Colin, R.;Fayt, C.;Goutail, F.;Nunes-Pinharanda, M.;Pommereau, J.P.;Hausmann, M.;Platt, U.;Pundt, I.;Rudolph, T.;Hermans, C.;Simon, P.C.;Vandaele, A.C.;Plane, J.;Smith, N. (1996): Intercomparison of Instruments for Troposheric Measurements using Differential Optical Absorption Spectroscopy. J. Atm. Chem. 23, 51–80

    Article  CAS  Google Scholar 

  2. Plait, U.;Perner, D.;Pätz, H. (1979): Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential Optical Absorption. J. Geophys. Res. 84, 6329–6335

    Article  Google Scholar 

  3. Solomon, S.;Schmeltekopf, A.L.;Sanders, R.W. (1987): On the interpretation of zenith sky absorption measurements. J. Geophys. Res. 92, 8311–8319

    Article  CAS  Google Scholar 

  4. Ramanathan, V.;Vogelmann, A.M. (1997): Greenhouse effect, atmospheric solar absorption and the Earth’s radiation budget: from the Arrhenius-Langley era to the 1990s. Royal Swedisch Academy of Sciences 26, 38–46

    Google Scholar 

  5. Arking, A. (1996): Absorption of solar energy in the atmosphere: discrepancy between model and observations. Science 273, 779–782

    Article  CAS  Google Scholar 

  6. Erle, F.;Pfeilstjcker, K.;Platt, U. (1995): On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species. Geophys. Res. Lett. 22, 2725–2728

    Article  CAS  Google Scholar 

  7. Wagner, T.; Bosch, H.; Funk, O.; Leue, C.; Pfeilsticker, K.; Platt, U. (1997): Cloud properties deduced from GOME O2- and O4- observations. Polar stratospheric ozone 1997, Schliersee, Germany, 22–26 September, p. 514–517

  8. Vandaele, A.C.;Hermans, C.;Simon, P.C.;Van Roozendael, M.;Guilmot, J.M.;Carleer, M.;Colin, R. (1996): Fourier Transform Measurement of the NO2 Absorption Cross-sections in the Visible Range at Room Temperature. J. Atm. Chem. 25, 289–305

    Article  CAS  Google Scholar 

  9. Lux, J.P.;Coquart, B. (1989): A cooled multipass cell for the absorption study of atmospheric compounds. J. Phys. E: Sci. Instrum. 22, 967–968

    Article  CAS  Google Scholar 

  10. Lux, J.P.;Jenouvrjer, A. (1985): Réalisation d’une cellule d’absorption à réflexions multiples de grande dimension (longueur: 50 m). Revue Phys. Appl. 20, 869–875

    Google Scholar 

  11. Vandaele, A.C.;Hermans, C.;Simon, P.C.;Carleer, M.;Colin, R.;Fally, S.;Mérienne, M.-E.;Jenouvrier, A.;Coquart, B. (1997): Measurements of the NO2 Absorption Cross-section from 42000 cm1 to 10000 cm1 (238-1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transfer 59, 171–184

    Article  Google Scholar 

  12. Bates, D.R. (1989): Oxygen band system transition arrays. Planet. Space Sci 37, 881–887

    Article  CAS  Google Scholar 

  13. Hasson, V.;Nicholls, R.W. (1971): Absolute spectral absorption measurements on molecular oxygen from 2640-1920 Å: I. Herzberg I (A 3S+u-3S-g) bands (2640-2430 Å). J. Phys. B: Atom. Molec. Phys. 4, 1778–1788

    Article  CAS  Google Scholar 

  14. Huestis, D.L.;Copeland, R.A.;Knutsen, K.;Slanger, T.G.;Jongman, R.T.;Boogaarts, M.G.H.;Meijer, G. (1994): Branch intensities and oscillator strengths for the Herzberg absorption systems in oxygen. Can. J. Phys. 72, 1109

    CAS  Google Scholar 

  15. Kerr, C.M.L.;Watson, J.K.G. (1986): Rotational line strenghts in3Δ-3σ electronic transitions. The Herzberg III system of molecular oxygen. Can. J. Phys. 64, 36–44

    CAS  Google Scholar 

  16. Yoshino, K.;Esmond, J.R.;Murray, J.E.;Parkinson, W.H.;Thorne, A.P.;Learner, R.C.M.;Cox, G. (1995): Band oscillator strengths of the Herzberg I bands of O2. J. Chem. Phys. 103, 1243–1249

    Article  CAS  Google Scholar 

  17. Wulf, O.R. (1928): A progression relation in the molecular spectrum of oxygen occurring in the liquid and in the gas at high pressure. Proc. Nat. Acad. Sci. (US) 14, 609–613

    Article  CAS  Google Scholar 

  18. Finkelnburg, W.;Steiner, W. (1932): Uber die absorptionsspektren des hochcomprimierten Sauerstoffs und die Existenz von O4-Molekulen. Z. Phys. 72, 69–88

    Google Scholar 

  19. Shardanand, R. (1969): Absorption cross-sections of O2 and O4 between 2000 and 2800 Å. Phys. Rev. 186, 5–9

    Article  CAS  Google Scholar 

  20. Krupenie, P.H. (1972): The spectrum of molecular oxygen. J. Phys. Chem. Ref. Data 1, 423–534

    Article  CAS  Google Scholar 

  21. Blake, A.J.;McCoy, D.G. (1987): The pressure dependence of the Herzberg photoabsorption continuum of oxygen. J. Quant. Spectrosc. Radiat. Transfer 38, 113–120

    Article  CAS  Google Scholar 

  22. Shardanand, R. (1977): Nitrogen-induced absorption of oxygen in the Herzberg continuum. J. Quant. Spectrosc. Radiat. Transfer 18, 525–530

    Article  CAS  Google Scholar 

  23. Bernath, P.;Carleer, M.;Fally, S.;Jenouvrier, A.;Vandaele, A.C.;Hermans, C.;Mérienne, M.-E.;Colin, R. (1998): The Wulf bands of oxygen. Chem. Phys. Letter 297, 293–299

    Article  CAS  Google Scholar 

  24. Tabisz, G.C.;Allin, E.J.;Welsh, H.L. (1969): Interpretation of the visible and near-infrared absorption spectra of compressed oxygen as collision-induced electronic transitions. Can. J. Phys. 47, 2859–2871

    CAS  Google Scholar 

  25. Blickensderfer, R.P.;Ewing, G.E. (1969): Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. I. The1Δg <-3Σg system. J. Chem. Phys. 51, 873–883

    Article  CAS  Google Scholar 

  26. Blickensderfer, R.P.;Ewing, G.E. (1969): Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. II. The simultaneous transitions1δg +1δg <-3Σg +3Σg and1δg +3Σg+ <- +3Σg +3Σg J. Chem. Phys. 51, 5284–5289

    Article  CAS  Google Scholar 

  27. Dianov-Klokov, V.I. (1964): Absorption spectrum of oxygen at pressures from 2 to 35 atm in the region from 12600 to 3600 Å. Opt. Spectrosc. 16, 224–227

    Google Scholar 

  28. Dianov-Klokov, V.I. (1966): Absorption spectrum of condensed oxygen in the 1.26-3 μ region. Opt. Spectrosc. 20, 530–534

    Google Scholar 

  29. Herman, L. (1939): Spectre d’absorption de l’oxygène. Ann. Phys. 11, 548–611

    CAS  Google Scholar 

  30. Osterkamp, H.; Ferlemann, E.; Harder, H.; Perner, D.; Platt, U.; Schneider, M.; Pfeilsticker, K. (1997): First Measurement of the Atmospheric O4 Profile. Polar stratospheric ozone 1997, Schliersee, Germany, 22–26 September, p. 478–481

  31. Perner, D.;Platt, U. (1980): Absorption of light in the atmosphere by collision pairs of oxygen (O2)2. Geophys. Res. Lett. 7, 1053–1056

    Article  CAS  Google Scholar 

  32. Greenblatt, G.D.;Orlando, J.J.;Burkholder, J.B.;Ravishankara, A.R. (1990): Absorption measurements of oxygen between 330 and 1140 nm. J. Geophys. Res. 95, 18577–18582

    Article  Google Scholar 

  33. Van Roozendael, M. (1998). Personal communication

  34. Van Roozendael, M.; Lambert, J.C.; Roscoe, H.K. (1998): Temperature dependent spectral resolution effects in SAOZ UV-visible spectrometers. SCUVS III Workshop, Paris (France), 28–30 April

  35. Mellqvist, J.;Rosén, A. (1996): DOAS for flue gas monitoring-II. Deviations from the Beer-Lambert law for the U.V./ Visible absorption spectra of NO, NO2, SO2 and NH3 J. Quant. Spectrosc. Radiat. Transfer 56, 209–224

    Article  CAS  Google Scholar 

  36. Mellqvist, J.;Axelsson, H.;Rosŋ, A. (1996): DOAS for flue gas monitoring-III. In-situ monitoring of sulfur dioxide, nitrogen monoxide and amonia. J. Quant. Spectrosc. Radiat. Transfer 56, 225–240

    Article  CAS  Google Scholar 

  37. Vandaele, A.C.; Carleer, M. (accepted): Development of Fourier transform spectrometry for UV-visible DOAS measurements of tropospheric minor constituents. Appl. Opt.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hermans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermans, C., Vandaele, A.C., Carleer, M. et al. Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O. Environ. Sci. & Pollut. Res. 6, 151–158 (1999). https://doi.org/10.1007/BF02987620

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987620

Keywords

Navigation