Skip to main content

Advertisement

Log in

Dynamic changes in cardiac fatty acid metabolism in the stunned human myocardium

  • Original Articles
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Background

The chronological changes or mechanisms in cardiac fatty acid metabolism under clinical conditions of hypoxia and ischemia have not been fully elucidated.123I-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) can be used with single photon emission computed tomography (SPECT) to evaluate myocardial fatty acid metabolism. We investigated chronological changes in energy metabolism in the stunned human myocardium by means of123I-BMIPP myocardial SPECT.

Methods and Results

We conducted123I-BMIPP myocardial SPECT in 10 patients with stunned myocardium during the acute, subacute and chronic phases after onset. The left ventricle was divided into 9 regions on SPECT, and the degree of abnormalities in each region was scored in four grades from normal (0) to defect (4). We also examined wash-out rates on BMIPP images. The scores on early BMIPP images in the acute, subacute and chronic phases were 5.6±1.8, 13.4±3.5 and 2.5±1.1, respectively, and the score was highest in the subacute phase (p<0.001). Similarly, scores on the late images were 2.3±1.7, 18.3±4.5 and 4.7±2.6, respectively, and highest in the subacute phase (p<0.001). The wash-out rates (normal: 18.2±2.1%) in the acute, subacute and chronic phases were 12.1±4.8%, 44.9±10.0% and 23.1±4.6%, respectively, with the value being lowest during the acute phase (p<0.05), and highest during the subacute phase (p<0.001).

Conclusion

These results suggested that fatty acid metabolism in the stunned human myocardium changes dynamically over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwaiger M, Schelbert HR, Ellison D, et al. Retention and clearance of11C-palmitate in ischemic and reperfused canine myocardium.J Am Coll Cardiol 1985; 6: 336–347.

    PubMed  CAS  Google Scholar 

  2. Rosamund TL, Abendschein DR, Sobel BE, Bergmann SR, Fox KA. Metabolic fate of radiolabeled palmitate in ischemic canine myocardium: implications for positron emission tomography.J Nucl Med 1987; 28: 1322–1329.

    Google Scholar 

  3. Marie PY, Menu P, Angioi M, et al. The kinetic of β-methyl-substituted labeled fatty acids in ischemic myocardium: an analysis in man and with a blood-perfused isolated heart model.Eur J Nucl Med 1999; 26: 474–482.

    Article  PubMed  CAS  Google Scholar 

  4. Reske SN, Sauer W, Machulla HJ, Knust J, Winkler C. Metabolism of 15 (p-123I-iodophenyl-) pentadecanoic acid in heart muscle and non cardiac tissue.Eur J Nucl Med 1985; 10: 228–234.

    Article  PubMed  CAS  Google Scholar 

  5. Goodmann MM, Kirsch G, Knapp FF Jr. Synthesis and evaluation of radioiodinated terminal p-iodophenyl-substituted alpha- and beta-methyl branched fatty acids.J Med Chem 1984; 27: 390–397.

    Article  Google Scholar 

  6. Tateno M, Tamaki N, Yukihiro M, et al. Assessment of fatty acid uptake in ischemic heart disease without myocardial infarction.J Nucl Med 1996; 37: 1981–1985.

    PubMed  CAS  Google Scholar 

  7. Tamaki N, Kawamoto M, Yonekura Y, et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: Assessment with emission tomography using an iodinated branched fatty acid analog.J Nucl Med 1992; 33: 659–667.

    PubMed  CAS  Google Scholar 

  8. Tamaki N, Takahashi N, Kawamoto M, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease.J Nucl Med 1994; 35: 594–600.

    PubMed  CAS  Google Scholar 

  9. Rigo P, Leclercq B, Ltti R, Lahiri A, Braat S. Technetium-99m-tetrofosmin myocardial imaging: A comparison with thallium-201 and angiography.J Nucl Med 1994; 35: 587–593.

    PubMed  CAS  Google Scholar 

  10. Veretto T, Cantalupi D, Altieri A, Orlamdi C. Emergency room technetium-99m-sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiogram.J Am Coll Cardiol 1993; 22: 1804–1808.

    Google Scholar 

  11. Buxton DB, Mody FV, Krivokapick J, Phelps ME, Schelbert HR. Quantitative assessment of prolonged metabolic abnormalities in reperfused canine myocardium.Circulation 1992; 85: 1842–1856.

    PubMed  CAS  Google Scholar 

  12. Schwaiger M, Schelbert HR, Ellison D, et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model.J Am Coll Cardiol 1985; 6: 336–347.

    Article  PubMed  CAS  Google Scholar 

  13. Buxton DB, Schwaiger M, Vaghaiwalla MF, et al. Regional abnormality of oxygen consumption in reperfusion assessed with [1-11C]acetate and positron emission tomography.Am J Cardiol Imaging 1989; 3: 276–287.

    Google Scholar 

  14. Oliver MF, Kurien VA, Greenwood TW. Relation between serum-free-fatty-acids and arrhythmias and death after acute myocardial infarction.Lancet 1968; 1: 710–714.

    Article  PubMed  CAS  Google Scholar 

  15. Corr PB, Gross RW, Sobel BE. Amphipathic metabolites and membrane dysfunction in ischemic myocardium.Circ Res 1984; 55: 135–154.

    PubMed  CAS  Google Scholar 

  16. Katz AM, Messineo FC. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium.Circ Res 1984; 48: 1–16.

    Google Scholar 

  17. Liedtke AJ. Alterations of carbohydrates and lipid metabolism in the acutely ischemic heart.Prog Cardiovasc Dis 1981; 23: 321–336.

    Article  PubMed  CAS  Google Scholar 

  18. Mjos OD. Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs.J Clin Invest 1978; 50: 1386–1389.

    Article  Google Scholar 

  19. Liedtke AJ, Nellis SH, Neely JR. Effects of excess free fatty acids on ischemic myocardium in swine.Circ Res 1978; 43: 652–661.

    PubMed  CAS  Google Scholar 

  20. Staeter-Knowlen IM, Evanochko WT, Kollander JA, et al.1H NMR spectroscopic imaging of myocardial triglycerides in excised dog heart subjected to 24 hours of coronary occlusion.Circulation 1996; 93: 1464–1470.

    Google Scholar 

  21. Milled DD, Gill JB, Livni E, Elmaleh DR, et al. Fatty acid analogue accumulation: a maker of myocyte viability in ischemic-reperfused myocardium.Circ Res 1988; 63: 681–692.

    Google Scholar 

  22. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease.Biochemica et. Biophysica Acta 1994; 1213: 263–276.

    CAS  Google Scholar 

  23. Nishimura T, Sago M, Kihara K, Oka H, et al. Fatty acid myocardial imaging using123I-β-methyl-iodophenyl pentadecanoic acid (BMIPP): comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction (Occlusion and reperfusion model).Eur J Nucl Med 1989; 15: 341–345.

    Article  PubMed  CAS  Google Scholar 

  24. Saito T, Yasada T, Gold HK, et al. Differentiation of regional perfusion and fatty acid uptake in zones of myocardial injury.Nucl Med Commun 1991; 12: 663–675.

    Article  PubMed  CAS  Google Scholar 

  25. Yamamichi Y, Kusuoka H, Morishita K, et al. Metabolism of Iodine-123-BMIPP in perfused rat hearts.J Nucl Med 1995; 36: 1043–1054.

    PubMed  CAS  Google Scholar 

  26. Tanaka T, Okamoto F, Sohmiya K, et al. Lack of myocardial iodine-123 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) uptake and CD36 abnormality.Jpn Circ J 1997; 61: 724–725.

    Article  PubMed  CAS  Google Scholar 

  27. Fujibayashi Y, Yonekura Y, Takemura Y, et al. Myocardial accumulation of iodine beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)-methyl-pentadecanoic acid (BMIPP), in relation to ATP concentration.J Nucl Med 1990; 31: 1818–1822.

    PubMed  CAS  Google Scholar 

  28. Fujibayashi Y, Nohara R, Hosokawa R, et al. Metabolism and kinetics of Iodine-123-BMIPP in canine myocardium.J Nucl Med 1996; 37: 757–761.

    PubMed  CAS  Google Scholar 

  29. Kawasaki T, Ito K, Okano A, et al. A dynamic change by I123-15(p-iodophenyl)-3-R,S-methyl pentadecanoic acid myocardial single photon emission computed tomography in a 55-year-old woman.Jpn Circ J 1999; 63: 732–736.

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka K, Ito K, Kinoshita N, Nakagawa M, Terada K, Kajita Y, et al. Importance of the delayed123I-BMIPP image for detecting myocardial metabolic abnormality induced by transient myocardial ischemia: A case of vasospastic angina.KAKU IGAKU (Jpn J Nucl Med) 1997; 34: 229–235.

    CAS  Google Scholar 

  31. Opie LH, Tansey M, Kennelly BM. Proposed metabolic vicious circle in patients with large myocardial infarcts and high plasma-free fatty acid concentrations.Lancet 1977; 2: 890–892.

    Article  PubMed  CAS  Google Scholar 

  32. Oliver MF, Opie LH. Effect of glucose and fatty acid on myocardial ischemia and arrhythmia.Lancet 1994; 343: 155–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K., Sugihara, H., Kawasaki, T. et al. Dynamic changes in cardiac fatty acid metabolism in the stunned human myocardium. Ann Nucl Med 15, 343–350 (2001). https://doi.org/10.1007/BF02988241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988241

Key words

Navigation