Skip to main content
Log in

Regulation of glutamate transporters in astrocytes: Evidence for a relationship between transporter expression and astrocytic phenotype

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The astrocytic glutamate transporters, EAAT1 and EAAT2, remove released L-glutamate from the synaptic milieu thereby maintaining normal excitatory transmission. EAAT dysfunction during the excitotoxicity and oxidative stress of neurological insults may involve homoeostatic mechanisms associated with astrocytic function. We investigated aspects of EAAT function and expression in concert with astrocytic phenotype in primary cultures of cortical astrocytes and mixed cells of the spinal cord. In spinal cord mixed cultures, hydrogen peroxide (300 µM) reduced both EAAT activity and cellular viability to half of their basal values at 24 h post-treatment, but at 2 h EAAT activity was unaltered, while cellular viability was significantly decreased, suggestive of a mechanism for the maintenance of EAAT activity. Cytochemistry for MAP2, GFAP and propidium iodide revealed that neurons and astrocytes were damaged in a time-dependent manner. A change in astrocyte morphology was observed, with astrocyte cell bodies becoming larger and processes becoming more stellate and often shorter in length. EAAT1 immunoreactivity was reduced at 24 h post-treatment and a re-distribution of the protein was noted after 2 h treatment. In pure astrocytes, lipopolysaccharide (1 µg/ml, 3 d) increased [3H]D-aspartate uptake by 90%, as well as EAAT1 immunoreactivity and astrocyte stellation, as shown by immunofluorescent labelling for GFAP. In both culture systems, prominent changes were noted in EAAT function and localization in conjunction with altered astrocytic phenotype. Our findings are indicative of a relationship between astrocytic phenotype and the level of EAAT activity that may be a vital component of astrocytic homeostatic responses in brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aprico K, PM Beart, D Crawford and RD O’Shea (2004) Binding and transport of [3H](2S,4R)-4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes.J. Neurosci. Res. 75, 751–759.

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, BT Hyman and W Koroshetz (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?Trends Neurosci. 16, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake.Prog. Neurobiol. 65, 1–105.

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, C Iadecola and MA Moskowitz (1999) Pathobiology of ischaemic stroke: an integrated view.Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Duan S, CM Anderson, BA Stein and RA Swanson (1999) Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST.J. Neurosci. 19, 10193–10200.

    PubMed  CAS  Google Scholar 

  • Figiel M and J Engele (2000) Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism.J. Neurosci. 20, 3596–3605.

    PubMed  CAS  Google Scholar 

  • Gegelashvili G, NC Danbolt and A Schousboe (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia.J. Neurochem. 69, 2612–2615.

    PubMed  CAS  Google Scholar 

  • Gegelashvili G, Y Dehnes, NC Danbolt and A Schousboe (2000) The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms.Neurochem. Int. 37, 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg SD, LJ Martin and JD Rothstein (1995) Regional deafferentation down-regulates subtypes of glutamate transporter proteins.J. Neurochem. 65, 2800–2803.

    Article  PubMed  CAS  Google Scholar 

  • Gurney ME, R Liu, JS Althaus, ED Hall and DA Becker (1998) Mutant CuZn superoxide dismutase in motor neuron disease.J. Inherited Metab. Dis. 21, 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Hughes EG, JL Maguire, MT McMinn, RE Scholz and ML Sutherland (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking.Brain Res. Mol. Brain Res. 124, 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Levy LM, KP Lehre, SI Walaas, J Storm-Mathisen and NC Danbolt (1995) Down-regulation of glial glutamate transporters after glutamatergic denervation in the rat brain.Eur. J. Neurosci. 7, 2036–2041.

    Article  PubMed  CAS  Google Scholar 

  • Louvel E, J Hugon and A Doble (1997) Therapeutic advances in amyotrophic lateral sclerosis.Trends Pharmacol. Sci. 18, 196–203.

    PubMed  CAS  Google Scholar 

  • Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders.Biol. Psychiatry 26, 505–525.

    Article  PubMed  CAS  Google Scholar 

  • O’Shea RD (2002) Roles and regulation of glutamate transporters in the central nervous system.Clin. Exp. Pharmacol. Physiol. 29, 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  • Rembach A, BJ Turner, S Bruce, IK Cheah, RL Scott, EC Lopes, CJ Zagami, PM Beart, NS Cheung, SJ Langford and SS Cheema (2004) Antisense peptide nucleic acid targeting GluR3 delays disease onset and progression in the SOD1 G93A mouse model of familial ALS.J. Neurosci. Res. 77, 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Ridet JL, SK Malhotra, A Privat and FH Gage (1997) Reactive astrocytes: cellular and molecular cues to biological function.Trends Neurosci. 20, 570–577.

    Article  PubMed  CAS  Google Scholar 

  • Rosen DR, T Siddique, D Patterson, DA Figlewicz, P Sapp, A Hentati, D Donaldson, J Goto, JP O’Regan and HX Deng (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature 362, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, M Dykes-Hoberg, CA Pardo, LA Bristol, L Jin, RW Kuncl, Y Kanai, MA Hediger, Y Wang, JP Schielke and DF Welty (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate.Neuron 16, 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, G Tsai, RW Kuncl, L Clawson, DR Cornblath, DB Drachman, A Pestronk, BL Stauch and JT Coyle (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis.Ann. Neurol. 28, 18–25.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD,LJ Martin and RW Kuncl (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis.New Engl. J. Med. 326, 1464–1468.

    PubMed  CAS  Google Scholar 

  • Rothstein JD, M Van Kammen, AI Levey, LJ Martin and RW Kuncl (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis.Ann. Neurol. 38, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer D and V Fiano (2004) Astrogliosis in ALS: possible interpretations according to pathogenetic hypotheses.ALS and Other Motor Neuron Disord. 5, 22–25.

    Article  Google Scholar 

  • Schlag BD, JR Vondrasek, M Munir, A Kalandadze, OA Zelenaia, JD Rothstein and MB Robinson (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons.Mol. Pharmacol. 53, 355–369.

    PubMed  CAS  Google Scholar 

  • Scott HL, DV Pow, AE Tannenberg and PR Dodd (2002) Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer’s disease.J.Neurosci. 22, RC206 (1–5).

    Google Scholar 

  • Shaw PJ and CJ Eggett (2000) Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis.J. Neurol. 247, I17–27.

    Article  PubMed  Google Scholar 

  • Stanimirovic DB, R Ball and JP Durkin (1997) Stimulation of glutamate uptake and Na,K-ATPase activity in rat astrocytes exposed to ischemia-like insults.Glia 19, 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, SY Grooms, MV Bennett and RS Zukin (2000) The AMPAR subunit GluR2: still front and center-stage.Brain Res. 886, 190–207.

    Article  PubMed  CAS  Google Scholar 

  • Trotti D, NC Danbolt and A Volterra (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration?Trends Pharmacol. Sci. 19, 328–334.

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, D Trotti, C Tromba, S Floridi and G Racagni (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes.J. Neurosci. 14, 2924–2932.

    PubMed  CAS  Google Scholar 

  • Voutsinos-Porche B, G Bonvento, K Tanaka, P Steiner, E Welker, JY Chatton, PJ Magistretti and L Pellerin (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex.Neuron 37, 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, K Morimoto, T Hirao, H Suwaki, K Watase and K Tanaka (1999) Amygdala-kindled and pentylenetetrazoleinduced seizures in glutamate transporter GLAST-deficient mice.Brain Res. 845, 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Wu VW and JP Schwartz (1998) Cell culture models for reactive gliosis: new perspectives.J. Neurosci. Res. 51, 675–681.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Beart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagami, C.J., O’shea, R.D., Lau, C.L. et al. Regulation of glutamate transporters in astrocytes: Evidence for a relationship between transporter expression and astrocytic phenotype. neurotox res 7, 143–149 (2005). https://doi.org/10.1007/BF03033783

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033783

Keywords

Navigation