Skip to main content
Log in

Molecular mechanisms in schwann cell survival and death during peripheral nerve development, injury and disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The mechanisms determining the fate of Schwann cells during disease and injury of the adult mammalian peripheral nervous system (PNS) are becoming defined by current advances in molecular neurobiology. It is now apparent that the molecular pathways which regulate the production of the mature myelinating Schwann cell during development may also apply to degenerative and regenerative mechanisms following PNS disease. This review outlines neurobiological responses of Schwann cells during development, injury and disease in order to define the molecular pathways which regulate these crucial events. These mechanisms have implications for our attempts to intervene pharmacologically during pathologies of the PNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anton ES, G Weskamp, LG Reichardt and WD Matthew (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration.Proc. Natl. Acad. Set USA 91, 2795–2799.

    Article  CAS  Google Scholar 

  • Araki T, R Nagarajan and J Milbrandt (2001) Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery.J. Biol. Chem. 276, 34131–34141.

    Article  PubMed  CAS  Google Scholar 

  • Atanasoski S, S Shumas, C Dickson, SS Scherer and U Suter (2001) Differential cyclin-D1 requirements of proliferating Schwann cells during development and after injury.Mol. Cell. Neurosci. 18, 581–592.

    Article  PubMed  CAS  Google Scholar 

  • Atanasoski S, SS Scherer, KA Nave and U Suter (2002) Proliferation of Schwann cells and regulation of Cyclin-D1 expression in an animal model of Charcot-Marie-Tooth disease type 1A.J. Neurosci. Res. 67, 443–449.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin ASJr(1996) The NF-kappa B and I kappa B proteins, new discoveries and insights.Annu. Rev. Immunol. 14, 649–683.

    Article  PubMed  CAS  Google Scholar 

  • Bao L, JU Lindgren, Pvan der Meide, S Zhu, HG Ljunggren and J Zhu (2002) The critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis.Brain Pathol. 12, 420–429.

    PubMed  CAS  Google Scholar 

  • Barnes PJ and M Karin (1997) Nuclear factor-kappaB, a pivotal transcription factor in chronic inflammatory diseases.NEJM 336, 1066–1071.

    Article  PubMed  CAS  Google Scholar 

  • Bellone E, E Di Maria, S Soriani, A Varese, LL Doria, F Ajmar and P Mandich (1999) A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot-Marie-Tooth type 1 disease.Hum. Mutat. 14, 353–354.

    Article  PubMed  CAS  Google Scholar 

  • Bentley CA and KF Lee (2000) p75 is important for axon growth and Schwann cell migration during development.J. Neurosci. 20, 7706–7715.

    PubMed  CAS  Google Scholar 

  • Bhakar AL, PP Roux, C Lachance, D Kryl, C Zeindler and PA Barker (1999) The p75 neurotrophin receptor (p75NTR) alters tumour necrosis factor-mediated NF-κB activation under physiological conditions, but direct p75NTR-mediated NF-κB activation requires cell stress.J. Biol. Chem. 274, 21443–21449.

    Article  PubMed  CAS  Google Scholar 

  • Bonetti B, P Valdo, C Stegagno, R Tanel, G Zanusso, D Ramarli, E Fiorini, S Turazzi, M Carner and G Moretto (2000) Tumour necrosis factor alpha and human Schwann cells: signalling and phenotype modulation without cell death.J. Neuropathol. Exp. Neurol. 59, 74–84.

    PubMed  CAS  Google Scholar 

  • Brown MC, VH Perry, ER Lunn, S Gordon and R Heumann (1991) Macrophage dependence of peripheral sensory nerve regeneration, possible involvement of nerve growth factor.Neuron 6, 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Bui NT, HG Konig, C Culmsee, E Bauerbach, M Poppe, J Krieglstein and JH Prehn (2002) p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and rat hippocampal neurones.J. Neurochem. 81, 594–605.

    Article  PubMed  CAS  Google Scholar 

  • Busuttil V, V Bottero, C Frelin, B Imbert, JE Ricci, P Auberger and JF Peyron (2002) Blocking NF-kappaB activation in Jurkat leukemic T cells converts the survival agent and tumor promoter PMA into an apoptotic effector.Oncogene 21, 3213–3224.

    Article  PubMed  CAS  Google Scholar 

  • Chan JR, JM Cosgaya, YJ Wu and EM Shooter (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system.Proc. Natl. Acad. Sci. USA 98, 14661–14668.

    Article  PubMed  CAS  Google Scholar 

  • Chan JR, TA Watkins, JM Cosgaya, C Zhang, L Chen, LF Reichardt, EM Shooter and BA Barres (2004) NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes.Neuron 43, 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Chandler S, KM Miller, JM Clements, J Lury, DJ Corkill, DCC Anthony, SE Adams and AJ Gearing (1997) Matrix metalloproteinases, tumour necrosis factor and multiple sclerosis, an overview.J. Neuroimmunol. 72, 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Chandross KJ, DC Spray, RI Cohen, NM Kumar, M Kremer, R Dermietzel and JA Kessler (1996) TNF-α inhibits Schwann cell proliferation, connexin46 expression, and Gap junctional communication.Mol. Cell. Neurosci. 7, 479–500.

    Article  PubMed  CAS  Google Scholar 

  • Chang A, WW Tourtellotte, R Rudick and BD Trapp (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis.NEJM 346, 165–173.

    Article  PubMed  Google Scholar 

  • Cheung RT and DF Cechetto (2000) Neuropeptide Y-Y1 receptor antisense oligodeoxynucleotide increases the infarct volume after middle cerebral artery occlusion in rats.Neuroscience 98, 771–777.

    Article  PubMed  CAS  Google Scholar 

  • Clements JM, JA Cossins, GM Wells, DJ Corkill, K Helfrich and ML Wood (1997) Matrix metalloproteinase expression during experimental autoimmune encephalitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-α inhibitor.J. Neuroimmunol. 74, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Cosgaya JM, JR Chan and EM Shooter (2002) The neurotrophin receptor p75NTR as a positive modulator of myelination.Science 298, 1245–1248.

    Article  PubMed  CAS  Google Scholar 

  • Coulson EJ, K Reid, GL Barrett and PF Bartlett (1999) p75 neurotrophin receptor-mediated neuronal death is promoted by Bcl-2 and prevented by Bcl-xL.J. Biol. Chem. 274, 16387–16391.

    Article  PubMed  CAS  Google Scholar 

  • Coulson EJ, K Reid, KM Shipham, S Morley, TJ Kilpatrick and PF Bartlett (2004) The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling.Prog. Brain Res. 146, 41–62.

    Article  PubMed  CAS  Google Scholar 

  • DiStefano PS, DM Chelsea, CM Schick and JF McKelvy (1993) Involvement of a metalloprotease in low-affinity nerve growth factor receptor truncation, inhibition of truncationin vitro andin vivo.J. Neurosci. 13, 2405–2414.

    PubMed  CAS  Google Scholar 

  • Dowsing BJ, WA Morrison, NA Nicola, GP Starky, T Bucci and TJ Kilpatrick (1999) Leukaemia inhibitory factor is an autocrine survival factor for Schwann cells.J. Neurochem. 13, 96–104.

    Article  Google Scholar 

  • Frade JM and YA Barde (1998) Microglia-derived nerve growth factor causes cell death in the developing retina.Neuron 20, 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Frade JM and YA Barde (1999) Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord.Development 126, 683–690.

    PubMed  CAS  Google Scholar 

  • Funakoshi H, J Frisen and G Barbany (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve.J. Cell. Biol. 123, 455–465.

    Article  PubMed  CAS  Google Scholar 

  • Garratt AN, S Critsch and C Birchmeier (2000a) β-neuregulin-1, a factor with many functions in the life of a Schwann cell.Bioessays 22, 987–996.

    Article  PubMed  CAS  Google Scholar 

  • Garratt AN, O Voiculescu, P Topilko, P Charnay and C Birchmeier (2000b) A dual role oferbB2 in myelination and in expansion of the schwann cell precursor pool.J. Cell. Biol. 148, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Gearing AJ and AG Bruce (1992) Oncostatin M binds the highaffinity leukemia inhibitory factor receptor.New Biol. 4, 61–65.

    PubMed  CAS  Google Scholar 

  • Gearing AJ, P Beckett, M Christodoulou, M Churchill, J Clements, AH Davidson, AH Drummond, WA Galloway, R Gilbert, JL Gordonet al. (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases.Nature 370, 555–557.

    Article  PubMed  CAS  Google Scholar 

  • Grell M, G Zimmermann, E Grottfried, CM Chen, U Grunwald, DC Huang, YH Wu Lee, H Durkop, H Englemann and P Scheurich (1999) Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40, and CD30: a role of TNFR1 activation by endogenous membrane-anchored TNF.EMBO J. 18, 3034–3043.

    Article  PubMed  CAS  Google Scholar 

  • Grinspan JB, MA Marchionni, M Reeves, M Coulaloglou and SS Scherer (1996) Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins.J. Neurosci. 16, 6107–6118.

    PubMed  CAS  Google Scholar 

  • Gupta S (2002) A decision between life and death during TNF-α- Induced signaling.J. Clin. Immunol. 22, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Hall SM, EJ Redford and KJ Smith (2000) Tumour necrosis factorex has few morphological effects within the dorsal columns of the spinal cord, in contrast to its effects in the peripheral nervous system.J. Neuroimmunol. 106, 130–136.

    Article  PubMed  CAS  Google Scholar 

  • Hartung HP and BC Kieseier (2000) The role of matrix metalloproteinases in autoimmune damage to the central and peripheral nervous system.J. Neuroimmunol. 107, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Herr W, RA Sturm, RG Clerc, LM Corcoran, D Baltimore, PA Sharp, HA Ingraham, MG Rosenfeld, M Finney, G Ruvkun and HR Horvitz (1988) The POU domain, a large conserved region in the mammalianpit-1, oct-2, and Caenorhabditis elegans unc-86 gene products.Genes Dev. 2, 1513–1516.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, T Yamashita, H Yoshikawa and M Tohyama (2003) PKA phosphorylates the p75 receptor and regulates its localisation to lipid rafts.EMBO J. 22, 1790–1800.

    Article  PubMed  CAS  Google Scholar 

  • Hughes PM, GM Wells, JM Clements, AJ Gearing, EJ Redford, M Davies, KJ Smith, RA Hughes, MC Brown and KM Miller (1998) Matrix metalloproteinase expression during experimental autoimmune neuritis.Brain 121, 481–494.

    Article  PubMed  Google Scholar 

  • Jessen KR and R Mirsky (1998) Origin and early development of Schwann cells.Microscop. Res. Tech. 41, 393–402.

    Article  CAS  Google Scholar 

  • Keifer R, BC Kieseier, G Stoll and HP Hartung (2001) The role of macrophages in immune-mediated damage to the peripheral nervous system.Prog. Neurobiol. 64, 109–127.

    Article  Google Scholar 

  • Khursigara G, J Bertin, H Yano, H Moffett, PS DiStefano and MV Chao (2001) A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptorinteracting protein 2.J. Neurosci. 21, 5854–5863.

    PubMed  CAS  Google Scholar 

  • Kim HA, SL Pomeroy, W Whoriskey, I Pawlitzky, LI Benowitz, P Sicinski, CD Stiles and TM Roberts (2000) A developmentally regulated switch directs regenerative growth of Schwann cells through cyclin D1.Neuron 26, 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Kim GM, J Xu, J Xu, SK Song, P Yan, G Ku, XM Xu and CY Hsu (2001a) Tumour necrosis factor receptor deletion reduces nuclear factor-κB activation, cellular inhibitor of apoptosis protein-2 expression, and functional recovery after traumatic spinal cord injury.J. Neurosci. 21, 6617–6625.

    PubMed  CAS  Google Scholar 

  • Kim HA, N Ratner, TM Roberts and CD Stiles (2001b) Schwann cell proliferative responses to cAMP and Nf1 are mediated by cyclin D1.J. Neurosci. 21, 1110–1116.

    PubMed  CAS  Google Scholar 

  • La FleurM, JL Underwood, DA Rappolee and Z Werb (1996) Basement membrane and repair of injury to peripheral nerve, defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1.J. Exp. Med. 184, 2311–2326.

    Article  PubMed  Google Scholar 

  • Levi AD, RP Bunge, JA Lofgren, L Meima, F Hefti, K Nikolics and MX Sliwkowski (1995) The influence of heregulins on human Schwann cell proliferation.J. Neurosci. 15, 1329–1340.

    PubMed  CAS  Google Scholar 

  • Lindenlaub T and C Sommer (2003) Cytokines in sural nerve biopsies from inflammatory and non-inflammatory neuropathies.Acta Neuropathol. 105, 593–602.

    PubMed  CAS  Google Scholar 

  • Lunn ER, J Scourfield, RJ Keynes and CD Stern (1987) The neural tube origin of ventral root sheath cells in the chick embryo.Development 101, 247–254.

    PubMed  CAS  Google Scholar 

  • Majdan M, C Lachance, A Gloster, R Aloyz, C Zeindler, S Bamji, A Bhakar, D Belliveau, J Fawcett, FD Miller and PA Barker (1997) Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis.J. Neurosci. 17, 6988–6998.

    PubMed  CAS  Google Scholar 

  • Matsuoka I, M Meyer and H Thoenen (1991) Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types.J. Neurosci. 11, 3165–3177.

    PubMed  CAS  Google Scholar 

  • Meier C, E Parmantier, A Brennan, R Mirsky and KR Jessen (1999) Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB.J. Neurosci. 19, 3847–3859.

    PubMed  CAS  Google Scholar 

  • Michailov GV, MW Sereda, BG Brinkmann, TM Fischer, B Haug, C Birchmeier, L Role, C Lai, MH Schwab and KA Nave (2004) Axonal neuregulin-1 regulates myelin sheath thickness.Science 304, 700–703.

    Article  PubMed  CAS  Google Scholar 

  • Micheau O and J Tschopp (2003) Induction of TNF receptor Imediated apoptosis via two sequential signaling complexes.Cell 114, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R and KR Jessen (1996) Schwann cell development, differentiation and myelination.Curr. Opin. Neurobiol. 6, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R and KR Jessen (1999) The neurobiology of Schwann cells.Brain Pathol. 9, 293–311.

    PubMed  CAS  Google Scholar 

  • Mirsky R and KR Jessen (2001) Embryonic and early postnatal development of Schwann cells, In,Molecular and Cellular Neurobiology Series: Glial Cell Development, 2nd Edition (Jessen KR and WD Richardson, Eds.) (Oxford University Press: New York), pp 1–20.

    Google Scholar 

  • Mirsky R, KR Jessen, A Brennan, D Parkinson, Z Dong, C Meier, E Parmantier and D Lawson (2002) Schwann cells as regulators of nerve development.J. Physiol. (Paris) 96, 17–24.

    Article  CAS  Google Scholar 

  • Moneo V, M del Valle Guijarro, W Link and A Carnero (2003) Overexpression of cyclin D1 inhibits TNF-induced growth arrest.J. Cell Biochem. 89, 484–499.

    Article  PubMed  CAS  Google Scholar 

  • Monuki ES, G Weinmaster, R Kuhn and G Lemke (1989) SCIP: a glial POU domain gene regulated by cyclic AMP.Neuron 3, 783–793.

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, SE Perez, Z Qiao, JM Verdi, C Micks, G Weinmaster and DJ Anderson (2000) Transient notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells.Cell 101, 499–510.

    Article  PubMed  CAS  Google Scholar 

  • Myers RR, Y Sekiguchi, S Kikuchi, B Scott, S Medicherla, A Protter and WM Campana (2003) Inhibition of p38 MAP kinase activity enhances axonal regeneration.Exp. Neurol. 184, 606–614.

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan R, J Svaren, N Le, T Araki, M Watson and J Milbrandt (2001) EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression.Neuron 30, 355–368.

    Article  PubMed  CAS  Google Scholar 

  • Nakao J, J Shinoda, Y Nakai, S Murase and K Uyemura (1997) Apoptosis regulates the number of Schwann cells at the premyelinating stage.J. Neurochem. 68, 1853–1862.

    Article  PubMed  CAS  Google Scholar 

  • Nickols JC, W Valentine, S Kanwal and BD Carter (2003) Activation of the transcription factor NF-κB in Schwann cells is required for peripheral nerve myelin formation.Nat. Neurosci. 6, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson DB, A Bhaskaran, A Droggiti, S Dickinson, M D’Antonio, R Mirsky and KR Jessen (2004)Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death.J. Cell. Biol. 164, 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, MC Brown and S Gordon (1987) The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration.J. Exp. Med. 165, 1218–1223.

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, JW Tsao, S Feam and MC Brown (1995) Radiationinduced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice.Eur. J. Neurosci. 7, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Petratos S, H Butzkueven, K Shipham, H Cooper, T Bucci, K Reid, E Lopes, B Emery, SS Cheema and TJ Kilpatrick (2003) Schwann cell apoptosis in the postnatal axotomised sciatic nerve is mediated via NGF through the low affinity neurotrophin receptor.J. Neuropathol. Exp. Neurol. 62, 398–411.

    PubMed  CAS  Google Scholar 

  • Putzu GA, D Figarella-Branger, C Bouvier-Labit, A Liprandi, N Bianco and JF Pellissier (2000) Immunohistochemical localisation of cytokines, C5b-9 and ICAM-1 in peripheral nerve of Guillain-Barre syndrome.J. Neurol. Sci. 174, 16–21.

    Article  PubMed  CAS  Google Scholar 

  • Redford EJ, SM Hall and KJ Smith (1995) Vascular changes and demyelination induced by the intraneural injection of tumour necrosis factor.Brain 118, 869–878.

    Article  PubMed  Google Scholar 

  • Redford EJ, KJ Smith, NA Gregson, M Davies, PM Hughes and AJ Gearing (1997) A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor alpha processing attenuates experimental autoimmune neuritis.Brain 120, 1895–1905.

    Article  PubMed  Google Scholar 

  • Roberts JM(1999) Evolving ideas about cyclins.Cell 98, 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA(2002) Matrix metalloproteinases in neuroinflammation.Glia 39, 279–291.

    Article  PubMed  Google Scholar 

  • Rothe M, MG Pan, WJ Henzel, TM Ayres and DV Goeddel (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins.Cell 83, 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  • Roux PP and PA Barker (2002) Neurotrophin signaling through the p75 neurotrophin receptor.Prog. Neurobiol. 67, 203–233.

    Article  PubMed  CAS  Google Scholar 

  • Said G and M Hontebeyrie-Joskowicz (1992) Nerve lesions induced by macrophage activation.Res. Immunol. 143, 589–599.

    Article  PubMed  CAS  Google Scholar 

  • Sancho S, P Young and U Suter (2001) Regulation of Schwann cell proliferation and apoptosis in PMP22-deficient mice and mouse models of Charcot-Marie-Tooth disease type 1A.Brain 124, 2177–2187.

    Article  PubMed  CAS  Google Scholar 

  • Saren P, HG Welgus and PT Kovanen (1996) TNF-α and IL-1β selectively induce expression of 92-kDa gelatinase by human macrophages.J. Immunol. 157, 4159–4165.

    PubMed  CAS  Google Scholar 

  • Sarih M, B Souvannavong, SC Brown and A Adam (1993) Silica induces apoptosis in macrophages and the release of interleukin1 alpha and interleukin-1 beta.J. Leukocyte Biol. 54, 407–413.

    PubMed  CAS  Google Scholar 

  • Scherer SS, DY Wang, R Kuhn, G Lemke, L Wrabetz and J Kamholz (1994) Axons regulate Schwann cell expression of the POU transcription factor SCIP.J. Neurosci. 14, 1930–1942.

    PubMed  CAS  Google Scholar 

  • Scherer SS and JL Salzer (2001) Axon-Schwann cell interactions during peripheral nerve degeneration and regeneration, InGlial Cell Development: Basic Principles and Clinical Relevance (Jessen KR and WD Richardson, Eds.), (Oxford University Press: New York), pp 300–330.

    Google Scholar 

  • Schulze-Osthoff K, D Ferrari, M Los, S Wesselborg and ME Peter (1998) Apoptosis signaling by death receptors.Eur. J. Biochem. 254, 439–459.

    Article  PubMed  CAS  Google Scholar 

  • Shamash S, F Reichert and S Rotshenker (2002) The cytokine network of Wallerian degeneration, tumour necrosis factor-α, interleukin-1α, and interleukin-1β.J. Neurosci. 22, 3052–3060.

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1993) Mammalian GI cyclins.Cell 73, 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ(1996) Cancer cell cycles.Science 274, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  • Shubayev VI and RR Myers (2000) Upregulation and interaction of TNFalpha and gelatinases A and B in painful peripheral nerve injury.Brain Res. 855, 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Siebert H, N Dippel, M Mader, F Weber and W Bruck (2001) Matrix metalloproteinase expression and inhibition after sciatic nerve axotomy.J. Neuropathol. Exp. Neurol. 60, 85–93.

    PubMed  CAS  Google Scholar 

  • Skoff AM, RP Lisak, B Bealmear and JA Benjamins (1998) TNF-α and TGF-β act synergistically to kill Schwann cells.J. Neurosci. Res. 53, 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Soilu-Hanninen M, P Ekert, T Bucci, DE Syroid, PF Bartlett and TJ Kilpatrick (1999) Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl2-independent pathway.J. Neurosci. 19, 4828–4838.

    PubMed  CAS  Google Scholar 

  • Syroid DE, PJ Maycox, M Soilu-Hanninen, S Petratos, T Bucci, P Burrola, S Murray, S Cheema, KF Lee, G Lemke and TJ Kilpatrick (2000) Induction of postnatal Schwann cell death by the low-affinity neurotrophin receptorin vitro and after axotomy.J. Neurosci. 20, 5741–5747.

    PubMed  CAS  Google Scholar 

  • Taniuchi M, HB Clarke, JB Schweitzer and EMJ Johnson (1988) Expression of nerve growth factor receptors by Schwann cells of axotomised peripheral nerves, ultrastructural location, suppression by axonal contact, and binding properties.J. Neurosci. 8, 664–681.

    PubMed  CAS  Google Scholar 

  • Tartaglia L, D Pennica and DV Goeddel (1993) Ligand passing: the 75-kDa tumour necrosis factor (TNF) receptor recruits TNF for signaling by the p55-kDa TNF receptor.J. Biol. Chem. 268, 18542–18548.

    PubMed  CAS  Google Scholar 

  • Timmerman V, PDe Jonghe, C Ceuterick, EDe Vriendt, A Lofgren, E Nelis, LE Warner, JR Lupski, JJ Martin and CVan Broeckhoven (1999) Novel missense mutation in the early growth response 2 gene associated with Dejerine-Sottas syndrome phenotype.Neurology 52, 1827–1832.

    PubMed  CAS  Google Scholar 

  • Topilko P, S Schneider-Maunoury, G Levi, ABaron-Van Evercooren, AB Chennoufi, T Seitanidou, C Babinet and P Charnay (1994)Krox-20 controls myelination in the peripheral nervous system.Nature 371, 790–796.

    Article  Google Scholar 

  • Topilko P, G Levi, G Merlo, S Mantero, C Desmarquet, G Mancardi and P Charnay (1997) Differential regulation of the zinc finger genesKrox-20 andKrox-24 (Egr1) suggests antagonistic roles in Schwann cells.J. Neurosci. Res. 50, 702–712.

    Article  PubMed  CAS  Google Scholar 

  • Topilko P and D Meijer (2001) Transcription factors that control Schwann cell development and myelination, InGlial Cell Development: Basic Principles and Clinical Relevance (Jessen KR and WD Richardson, Eds.), (Oxford University Press: New York), pp 223–244.

    Google Scholar 

  • Trinchieri G (1995) Interleukin-12, a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity.Annu. Rev. Neurosci. 13, 251–276.

    CAS  Google Scholar 

  • Turnley AM and PF Barlett (2000) Cytokines that signal through the Leukaemia inhibitory factor receptor-B complex in the nervous system.J. Neurochem. 74, 1–11.

    Article  Google Scholar 

  • Wagner R and RR Myers (1996) Schwann cells produce tumour necrosis factor alpha: expression in injured and non-injured nerves.Neuroscience 73, 625–629.

    Article  PubMed  CAS  Google Scholar 

  • Warner LE, P Mancias, IJ Butler, CM McDonald, L Keppen, KG Koob and JR Lupski (1998) Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies.Nat. Genet. 18, 382–384.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Y Toyama and A Nishiyama (2002) Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion.J. Neurosci. Res. 69, 826–836.

    Article  PubMed  CAS  Google Scholar 

  • Weishaupt A, W Bruck, T Hartung, KV Toyka and R Gold (2001) Schwann cell apoptosis in experimental autoimmune neuritis of the Lewis rat and the functional role of tumour necrosis factor-α.Neurosci. Lett. 306, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Weiss T, M Grell, K Siekienski, F Muhlenbeck, H Durkop, K Pfizenmaier, P Scheurich and HJ Wajant (1998) TNFR-80-dependent enhancement of TNFR60-induced cell death is mediated by TNFR-associated factor-2 and is specific for TNFR60.J. Immunol. 161, 3136–3142.

    PubMed  CAS  Google Scholar 

  • Winseck AK, J Caldero, D Ciutat, D Prevette, SA Scott, G Wang, JE Esquerda and RW Oppenheim (2002) In vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor.J. Neurosci. 22, 4509–4521.

    PubMed  CAS  Google Scholar 

  • Yamauchi J, JR Chan and EM Shooter (2003) Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway.Proc. Natl. Acad. Sci. USA 100, 14421–14426.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi J, JR Chan and EM Shooter (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases.Proc. Natl. Acad. Sci. USA 101(23), 8774–8779. Epub 2004 May 25.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, K Lindholm, Y Konishi, R Li and S Yong (2002) Target depletion of distinct tumour necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways.J. Neurosci. 22, 3025–3032.

    PubMed  CAS  Google Scholar 

  • Yarden Y and MX Sliwkowski (2001) Untangling the ErbB signalling network.Nat. Rev. Mole. Cell Biol. 2, 127–137.

    Article  CAS  Google Scholar 

  • Zhang J, X Luo, CJ Xian, Z Liu and X Zhou (2000) Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents.Eur. J. Neurosci. 12, 4171–4180.

    Article  PubMed  CAS  Google Scholar 

  • Zorick TS, DE Syroid, E Arroyo, SS Scherer and G Lemke (1996) The transcription factors SCIP andKrox-20 mark distinct stages and cell fates in Schwann cell differentiation.Mol. Cell. Neurosci. 8, 129–145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Petratos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, K., Azari, M.F., Profyris, C. et al. Molecular mechanisms in schwann cell survival and death during peripheral nerve development, injury and disease. neurotox res 7, 151–167 (2005). https://doi.org/10.1007/BF03033784

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033784

Keywords

Navigation