Skip to main content
Log in

Ballaststoffe: Mehr als ein Diätmittel

I. Arten, Eigenschaften, physiologische Wirkungen

Dietary fibre: More than a matter of dietetics

I. Compounds, properties, physiological effects

  • Übersicht
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Dietary fibre is a heterogeneous group of substances which have only one common characteristic: the non-digestability in the small bowel. With one exception all fibres are carbohydrates (poly- or disaccharides). Some fibres are water-soluble, others are unsoluble. This property is associated with physiological effects. Soluble (viscous) fibres can bind water and thus form hydrocolloids or gels, unsoluble ones cannot. Dietary fibres play an essential role in the physiology of the gastrointestinal tract. They modify the absorption of nutrients (particularly carbohydrates and lipids) in the small bowel. They accelerate the gut transit time and determine stool composition and quantity. They are the main nutritional source for the colonic microflora. During the bacterial fermentation short-chain fatty acids are formed which are essential for nutrition and integrity of the colonocytes and for colonic function. Moreover gases, detoxicating enzymes, antioxidants and carcinogen-inactivating compounds arise. The most important fibres are cellulose, hemicellulose, pectin, guar, psyllium, β-glucan, Klason lignin and digestion-resistant starch; they are present in varying amounts in plant foods and in fibre preparations. The usual daily intake of dietary fibre in Europe and the USA amounts to only 15–20g, while health authorities and nutrition societies recommend a reference value of at least 30 g. Dietary fibres are applied as food-integrated, as supplement and as purified substances.

Zusammenfassung

Ballaststoffe sind eine heterogene Gruppe von Substanzen, die nur eine Eigenschaft gemeinsam haben: die Nicht-Verdaulichkeit im Dünndarm. Mit einer Ausnahme sind alle Ballaststoffe Kohlenhydrate vom Typ der Poly- oder Oligosaccharide. Einige Ballaststoffe sind wasserlöslich, die anderen unlöslich. Dieses Kriterium korreliert mit ihrer physiologischen Wirkung. Lösliche (visköse) Ballaststoffe haben im Gegensatz zu den unlöslichen die Fähigkeit zu quellen und Hydrokolloide oder Gele zu bilden. Ballaststoffe spielen eine wesentliche Rolle in der Physiologie des Gastrointestinaltrakts. Sie modifizieren die Absorption von Nährstoffen (besonders Kohlenhydraten und Fetten) im Dünndarm. Sie beschleunigen die Darmpassage und bestimmen die Zusammensetzung und Quantität der Faeces. Sie stellen das hauptsächliche Nahrungssubstrat für die Colonflora dar. Bei ihrer Verwertung durch die Darmbakterien (Fermentation) kommt es zu bedeutsamen symbiotischen Effekten: Es werden kurzkettige Fettsäuren, die das Colonepithel ernähren und das Fließgleichgewicht von Zellbildung und_-elimination steuern, gebildet. Außerdem entstehen Gase, entgiftende Enzyme, Antioxidantien und carcinogen-inaktivierende Stoffe. Die wesentlichen Ballaststoff-Substanzen sind Cellulose, Hemicellulose, Pektin, Guar, Lignin und verdauungsresistente Stärke; sie kommen in unterschiedlichem Gehalt in pflanzlichen Lebensmitteln und in Ballaststoffpräparaten vor. Der durchschnittliche Ballaststoffkonsum in Europa und den USA liegt heute mit 15–20 g weit unter dem von den Fachgesellschaften empfohlenen Richtwert von mindestens 30g/Tag. Ballaststoffe werden in drei Applikationsformen — als komplexes Lebensmittel, als angereichertes Präparat und als isolierte Substanzen — eingesetzt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Rubner M (1883) Versuche über den Einfluss der Ausmahlung des Weizens auf die Verdaulichkeit beim Menschen. Zeitschr Biol, zit. nach Rubner M: Arch Anat Physiol (1917) 245–372

  2. Somogyi JC (1980) Einführung in die Bedeutung und Problematik von Nahrungsballaststoffen. In: Rottka H (Hrsg) Pflanzenfasern-Ballaststoffe in der menschlichen Ernährung. Thieme, Stuttgart New York, S 1–9

    Google Scholar 

  3. Feldheim W (1989) Verwertbare und nicht verwertbare Kohlenhydrate — Definition und chemische Bestimmungsverfahren. Ermähr Umschau 36: 40–44

    CAS  Google Scholar 

  4. Aldoori WH (1997) The protective role of dietary fiber in diverticular disease. In: Kritchevsky D, Bonfield C (eds) Dietary fiber in health an disease. Plenum Press, New York, pp 291–308

    Google Scholar 

  5. Burkitt DP, Trowell HC (eds) (1975) Refined carbohydrate foods and disease. Academic Press, London

    Google Scholar 

  6. Trowell HC (1972) Ischaemic heart disease and dietary fiber. Am J Clin Nutr 25: 926–932

    PubMed  CAS  Google Scholar 

  7. Deutsche, Oesterreichische, Schweizerische Gesellschaften für Ernährung (2000) Referenzwerte für die Nährstoffzufuhr. Umschau-Braus, Frankfurt

    Google Scholar 

  8. AAAC report (2001) The definition of dietary fiber. Cereal Foods World 46: 112–125

    Google Scholar 

  9. National Academy of Sciences, Panel on the definition of dietary fiber and the standing committee on the scientific evaluation of dietary references intakes (2001) Proposed definition of dietary fiber. National Academies Press, Washington, DC

    Google Scholar 

  10. McCleary BV (2003) Dietary fibre analysis. Proc Nutr Soc 62: 3–9

    Article  PubMed  CAS  Google Scholar 

  11. Eisenbrand G, Schreier P (Hrsg) (1995) Roempp Lexikon Lebensmittelchemie, Thieme, Stuttgart New York

    Google Scholar 

  12. Fugmann B, Lang-Fugmann S, Steglich W (Hrsg) (1997) Roempp Lexikon Naturstoffe. Thieme, Stuttgart New York

    Google Scholar 

  13. Zapasalis C, Beck RA (1986) Food chemistry and nutritional biochemistry. Wiley, New York

    Google Scholar 

  14. Edwards CA, Rowland IR (1992) Bacterial fermentation in the colon and its measurement. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 118–136

    Google Scholar 

  15. Wrick KL, Robertson JB, Van Soest PJ, Lewis BA, Rivers, JM, Roe DA, et al (1983) The influence of dietary fiber source on human intestinal transit and stool output, J Nutr 113: 1464–1479

    PubMed  CAS  Google Scholar 

  16. Thomas B (1980) Definition, Zusammensetzung und Eigenschaften von Ballaststoffen. In: Rottka H (Hrsg) Pflanzenfasern-Ballaststoffe in der menschlichen Ernährung. Thieme, Stuttgart New York, S 10–19

    Google Scholar 

  17. Ferguson LR, Chavan RR, Harris PJ (2001) Changing concepts of dietary fiber: implications for carcinogenesis. Nutr Cancer 39: 155–169

    Article  PubMed  CAS  Google Scholar 

  18. Ha MA, Jarvis MC, Mann JI (2000) A definition for dietary fibre. Eur J Clin Nutr 54: 861–864

    Article  PubMed  CAS  Google Scholar 

  19. Topping DL, Clifton PM (2001) Short chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81: 1031–1064

    PubMed  CAS  Google Scholar 

  20. Würsch P, Pi-Sunyer FX (1997) The role of viscous soluble fiber in the metabolic control of diabetes. Diab Care 20: 1774–1780

    Article  Google Scholar 

  21. Tomlin J, Read NW (1988) The relation between bacterial degradation of viscous polysaccharides and stool output in human beings. Br J Nutr 60: 467–475

    Article  PubMed  CAS  Google Scholar 

  22. Rigaud D, Paycha F, Meulemans A, Merrouche M, Mignon M (1998) Effect of psyllium on gastric emptying, hunger feeling and food intake in normal volunteers: a double blind study. Eur J Clin Nutr 52: 239–245

    Article  PubMed  CAS  Google Scholar 

  23. Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr 41: 353–362

    Article  PubMed  CAS  Google Scholar 

  24. Rubner M (1917) Die Verwertung aufgeschlossenen Strohs für die Ernährung des Menschens. Arch Anat Physiol 74–88

  25. Cummings JH, Englyst HN (1989) Measurement of starch fermentation in the human large intestine. Canad J Physiol Pharmacol 69: 121–129

    Google Scholar 

  26. Kasper H (2000) Ernährungsmedizin und Diätetik. Urban und Fischer, München Jena

    Google Scholar 

  27. Cummings JH, Beatty ER, Kingman SM, Bingham SA, Englyst NH (1996) Digestion and physiological properties of resistant starch in human large bowel. Br J Nutr 75: 733–747

    Article  PubMed  CAS  Google Scholar 

  28. Hylla S, Gostner A, Dusel G, Anger H, Bartram HP, Christl SU, et al (1998) Effect of resistant starch on the colon in healthy volumteers: possible implications for cancer prevention, Am J Clin Nutr 67: 136–142

    PubMed  CAS  Google Scholar 

  29. Goodlad RA, Englyst HN (2001) Redefining dietary fibre: potentially a recipe for diseaster, Lancet 358: 1833–1834

    Article  PubMed  CAS  Google Scholar 

  30. Wasan H, Goodlad RA (1996) Fibre-supplemented foods may damage your health, Lancet 348: 319–320

    Article  PubMed  CAS  Google Scholar 

  31. Salminen S, Bouley C, Bourtron-Ruault MC, Cummings JH, Franck A, Gibson GR, et al (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80 [Suppl 1]: 147–171

    Article  Google Scholar 

  32. Leitzmann C, Müller C, Michel P, Brehme U, Hahn A, Laube H (2003) Ernährung in Prävention und Therapie. Hippokrates, Stuttgart

    Google Scholar 

  33. Morris, ER (1992) Physico-chemical properties of food polysaccharides. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 41–56

    Google Scholar 

  34. Thibault JF, Lahaye M, Guillon F (1992) Physico-chemical properties of food plant cell walls. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 21–34

    Google Scholar 

  35. Nyman EM (2003) Importance of processing for physicochemical and physiological properties of dietary fibre. Proc Nutr Soc 62: 187–192

    PubMed  Google Scholar 

  36. Pechanek U, Pfannhauser W (1991) Beispiele für den Ballastsoffgehalt in Lebensmitteln heute. Z Ges Inn Med 46: 486–490

    PubMed  CAS  Google Scholar 

  37. Pospisil E (1987) Lösliche und unlösliche Ballaststoffe. Fortschr Med 105: 675–677

    Google Scholar 

  38. Lairon D, Bertrais S, Vincent S, Arnault N, Galan P, Boutron MC, et al (2003) Dietary fibre in take and clinical indices in the French supplementation en vitamines et mineraux antioxydants adult cohort. Proc Nutr Soc 62: 11–15

    Article  PubMed  CAS  Google Scholar 

  39. Lanza E, Jones DY, Block G, Kessler L (1987) Dietary fiber intake in the US population. Am J Clin Nutr 46: 790–797

    PubMed  CAS  Google Scholar 

  40. Howarth NC, Saltzman E, Roberts SB (2001) Dietary fiber and weight regulation. Nutr Rev 59: 129–139

    PubMed  CAS  Google Scholar 

  41. Hulshof KF, Brussard JH, Kruizinga AG, Telman J, Lowik MR (2003) Socio-economic status, dietary intake and 10 y trends. The Dutch National Food Consumption Survey. Eur J Clin 57: 128–137

    Article  CAS  Google Scholar 

  42. Dror Y, Berner YN, Stern F, Polyak Z (2002) Dietary intake analysis in institutionalized elderly: a focus on nutrient density. J Nutr Health Aging 6: 237–242

    PubMed  Google Scholar 

  43. Edwards CA, Parrett AM (2003) Dietary fibre in infancy and childhood. Proc Nutr Soc 62: 17–23

    PubMed  CAS  Google Scholar 

  44. National Academy of Sciences, Food and Nutrition Board, Institute for Medicine (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). National Academies Press, Washington DC

    Google Scholar 

  45. Monnier L (1985) Intérêt des fibres alimentaires en thérapeutique gastroenterologique et nutritionelle. Ann Med Interne 136: 677–681

    CAS  Google Scholar 

  46. Marlett JA, Cheung TF (1997) Database and quick methods of assessing typical dietary fiber intakes using data for 228 commonly consumed foods. J Am Diet Ass 97: 1130–1149

    Google Scholar 

  47. Wisker E, Rabe E, Metzner C, Feldheim W (1999) Zur Wirksamkeit von Leinsamen. Ernähr Umschau 46: 76–81

    CAS  Google Scholar 

  48. Burkitt DP, Walker AR, Painter NS (1972) Effect of dietary fibre on stools and transit times, and its role in the causation of disease. Lancet 2: 1408–1411

    Article  PubMed  CAS  Google Scholar 

  49. Corinaldesi R, Stanghellini V, Bocci G, Galassi A, Pratico A, Migliolo M (1982) Dietary fibers and intestinal transit times. Curr Ther Res 31: 173–180

    Google Scholar 

  50. Cummings JH, Branch W, Jenkins DJ, Southgate DA, Houston H, James WP (1978) Colonic response to dietary fibre from carrot, cabbage, apple, bran and guar gum. Lancet 1: 5–9

    Article  PubMed  CAS  Google Scholar 

  51. Davies GJ, Crowder M, Reid B, Dickerson JW (1986) Bowel function measurements of individuals with different eating patterns. Gut 27: 164–169

    Article  PubMed  CAS  Google Scholar 

  52. Hamberg O, Rumessen JJ, Gudmand-Hoyer E (1989) Inhibition of starch absorption by dietary fibre. A comparative study of wheat-bran, sugar-beet fibre and pea fibre. Scand J Gastroenterol 24: 103–109

    Article  PubMed  CAS  Google Scholar 

  53. Schmidt RF, Thews G, Lang F (2000) Physiologie des Menschen, 28, Aufl. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  54. Vincent R, Roberts A, Frier M, Perkins AC, Macdonald JA, Spiller RC (1995) Effect of bran particel size on gastric emptying and small bowel transit in humans: a scintigraphic study. Gut 37: 216–219

    Article  PubMed  CAS  Google Scholar 

  55. DiLorenzo C, Williams CM, Hajnal F, Valenzuela JE (1988) Pectin delays gastric emptying and increases satiety in obese subjects. Gastroenterology 95: 1211–1215

    CAS  Google Scholar 

  56. Schwartz SE, Levine RA, Singh A, Scheidecker JR, Track NS (1982) Sustained pectin ingestion delays gastric emptying. Gastroenterology 83: 812–817

    PubMed  CAS  Google Scholar 

  57. Stephen AM, Cummings JH (1980) Mechanism of action of dietary fibre in the human colon. Nature 284: 283–284

    Article  PubMed  CAS  Google Scholar 

  58. Tomlin J, Read NW (1988) Laxative properties of indigestible plastic particles. Br Med J 297: 1175–1176

    Article  CAS  Google Scholar 

  59. Lupton JR, Morin JL, Robinson MC (1993) Barley bran flour accelerates gastrointestinal transit time. J Am Diet Ass 93: 881–885

    Article  CAS  Google Scholar 

  60. Shetty PS, Kurpad MB (1986) Increasing starch intake in the human diet increases fecal bulking. Am J Clin Nutr 43: 210–212

    PubMed  CAS  Google Scholar 

  61. Wisker E, Krumm K; Feldheim W (1986) Einfluss der Partikelgröße von Getreideprodukten auf das Stuhlgewicht von jungen Frauen, Akt Ernähr 11: 208–211

    Google Scholar 

  62. Reddy BS, Engle A, Simi B, Goldman M (1992) Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer. Gastroenterology 102: 1475–1482

    PubMed  CAS  Google Scholar 

  63. Van Nieuwenhoven MA, Kovacs EM, Brummer JR, Westerterp-Plantenga MS, Brouns F (2001) The effect of different dosages of guar gum on gastric emptying and small intestinal transit of consumed semisolid meal. J Am Coll Nutr 20: 87–91

    PubMed  Google Scholar 

  64. Durrington PN, Manning AP, Boton HC, Hartog M (1976) Effect of pectin on serum lipids and lipoproteins, whole-gut transit time, and stool weight. Lancet 2: 394–396

    Article  PubMed  CAS  Google Scholar 

  65. Eastwood MA, Kirkpatrick JP, Mitchell WD, Bone A, Hamilton T (1973) Effect of dietary supplements with wheat bran and cellulose on feces and bowel function. Br Med J 4: 392–394

    Article  PubMed  CAS  Google Scholar 

  66. Wisker E, Feldheim W (1992) Faecal bulking and energy value of dietary fibre. In: Schweizer TF, Edwards CA, (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 233–246

    Google Scholar 

  67. Rubner M (1917) Weitere Untersuchungen zur Verdaulichkeit des mit Säuren aufgeschlossenen Holzmehls. Arch Anat Physiol 19–29

  68. Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73: 415S-420S

    PubMed  CAS  Google Scholar 

  69. Heller SN, Hackler LR, Rivers JM, Van Soest PJ, Roe DA, Lewis BA, et al (1980) The effect of particle size of wheat bran on colonic function in young adult men. Am J Clin Nutr 33: 1734–1744

    PubMed  CAS  Google Scholar 

  70. Bengmark S (2001) Pre-, pro- and synbioties. Curr Op Clin Nutr Metab Care 4: 571–579

    Article  CAS  Google Scholar 

  71. Read NW, Eastwood MA (1992) Gastro-intestinal physiology and function. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 102–117

    Google Scholar 

  72. Andoh A, Tsujikawa T, Fujiyama Y (2003) Role of dietary fiber on short chain fatty acids in the colon. Curr Pharm Des 9: 347–358

    Article  PubMed  CAS  Google Scholar 

  73. Scheppach W (1994) Effects of short chain fatty acids on gut morphology and function. Gut [Suppl 1]: S35-S38

    Article  Google Scholar 

  74. Livesay G (1990) Energy values of unavailable carbohydrates and diets: an inquiry and analysis. Am J Clin Nutr 51: 617–637

    Google Scholar 

  75. Cassidy A, Bingham SA, Cummings JH (1994) Starch intake and colorectal cancer risk: an international comparison. Br J Cancer 69: 937–942

    PubMed  CAS  Google Scholar 

  76. Beyer-Sehlmeyer G, Glei M, Hartmann E, Hughes R, Persin C, Bohm V, et al (2003) Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources. Br J Nutr 90: 1057–1070

    Article  PubMed  CAS  Google Scholar 

  77. Harris PJ, Ferguson LR (1999) Dietary fibres may protect or enhance carcinogenesis. Mut Res 443: 95–110

    CAS  Google Scholar 

  78. Scheppach W, Burghardt W, Bartram P, Kasper H (1990) Addition of dietary fiber to liquid formula diets: the pros and cons. J Parent Ent Nutr 14: 204–209

    Article  CAS  Google Scholar 

  79. Homann HH, Kemen M, Fuessenich C, Senkal M, Zumtobel V (1994) Reduction in diarrhea incidence by soluble fiber in patients receiving total or supplemental enteral nutrition. J Par Ent Nutr 18: 486–490

    Article  CAS  Google Scholar 

  80. Dormann A, Stehle P, Radziwill R, Löser C, Paul C, Keymling M, et al (2003) DGEM Leitlinie enterale Ernährung: Grundlagen. Aktuel Ernähr Med 28 [Suppl 1]: S26-S35

    Article  Google Scholar 

  81. Glotzer DJ, Glick ME, Goldmann H (1981) Proctitis and colitis following diversion of the fecal stream. Gastroenterology 80: 438–441

    PubMed  CAS  Google Scholar 

  82. Roediger WE (1990) The starved colon — diminished mucocal nutritition, diminished absorption, and colitis. Dis Col Rect 33: 858–862

    Article  CAS  Google Scholar 

  83. Goodlad RA, Wright NA (1983) Effect of addition of kaolin or cellulose to an elemental diet on intestinal cell proliferation in the mouse. Br J Nutr 50: 91–98

    Article  PubMed  CAS  Google Scholar 

  84. Brownlee JA, Havler ME, Dettmar PW, Allen A, Pearson JP (2003) Colonic mucus: secretion and turnover in relation to dietary fibre intake. Proc Nutr Soc 62: 245–249

    Article  PubMed  CAS  Google Scholar 

  85. McCullough JS, Ratcliffe B, Mandir N, Carr KE, Goodlad RA (1998) Dietary fibre and intestinal microflora: effects on intestinal morphometry and crypt branching. Gut 42: 799–806

    Article  Google Scholar 

  86. Whiteley LO, Purdon MP, Ridder GM, Bertram TA (1996) The interactions of diet and colonic microflora in regulating colonic mucosal growth. Toxicol Pathol 24: 305–314

    Article  PubMed  CAS  Google Scholar 

  87. Schmidt-Wittig U, Enss ML, Coenen M, Gartner K, Hedrich HJ (1996) Response of rat colonic mucosa to a high fiber diet. Ann Nutr Metab 40: 343–350

    Article  PubMed  CAS  Google Scholar 

  88. Flourié B (1992) The influence of dietary fibre on carbohydrate digestion and absorption. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food, Nutritional function in health and disease. Springer, London, pp 181–196

    Google Scholar 

  89. Johnson IT (1992) The influence of dietary fibre on lipid digestion and absorption. In: Schweizer TF, Edwards CA, (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 167–180

    Google Scholar 

  90. Eggum BO (1992) The influence of dietary fibre on protein digestion and utilisation. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food, Nutritional function in health and disease. Springer, London, pp 153–165

    Google Scholar 

  91. Isakson G, Lundquist I, Ihse I (1982) Effect of dietary fiber on pancreate enzyme activity in vitro. The importance of viscosity, pH, ionic strength, adsorption and time of incubation. Gastroenterology 82: 918–924

    Google Scholar 

  92. Dutta SK, Hlasko J (1985) Dietary fiber in pancreatic disease: effect of high fiber diet on fat malabsortion in pancreatic insufficiency and in vitro study of the interaction of dietary fiber with pancreatic enzymes. Am J Clin Nutr 41: 517–525

    PubMed  CAS  Google Scholar 

  93. Dunaif G, Schneemann BO (1981) The effect of dietary fiber on human pancreatic enzyme activity in vitro. Am J Clin Nutr 34: 1034–1035

    PubMed  CAS  Google Scholar 

  94. Hansen WE, Schulz G (1982) The effect of dietary fiber on pancreatic activity in vitro. Hepato-Gastroenterology 29: 157–160

    PubMed  CAS  Google Scholar 

  95. Monnier L, Colette C, Aguirre I, Mirouze J (1980) Evidence and mechanism of pectin-reduced intestinal inorganic iron absorption in idiopathic hemachromatosis. Am J Clin Nutr 33: 1225–1232

    PubMed  CAS  Google Scholar 

  96. Rossander L, Sandberg AS, Sandström B (1992) The influence of dietary fibre on mineral absorption and utilisation. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 197–216

    Google Scholar 

  97. Hagander B, Asp NG, Efendic S, Nilsson-Ehle P, Lundquist I, Schersten B (1986) Reduced glycemic response to beet-fibre meal in non-insulin dependent diabetics and its relation to plasma levels of pancreatic and gastrointestinal hormones. Diabet Res 3: 91–96

    CAS  Google Scholar 

  98. Hagander B, Holm J, Asp NG, Efendic S, Lundquist J, Nilsson-Ehle P, et al (1986) Metabolic response to beet fibre test meals. J Hum Nutr Diabet 1: 239–246

    Article  Google Scholar 

  99. Bourdon I, Olson B, Backus R, Richter BD, Davis PA, Schneemann BO (2001) Beans, as a source of dietary fiber, increase cholecystokinin and apolipoprotein B 48 response to test meals in men. J Nutr 131: 1485–1490

    PubMed  CAS  Google Scholar 

  100. Flourié, B, Vidon N, Chayvialle JA, Palma R, Bernier JJ (1985) Effect of increased amounts of pectin on a solid-liquid meal digestion in healthy men. Am J Clin Nutr 42: 495–503

    PubMed  Google Scholar 

  101. Piche T, de Varannes SB, Sacher-Huvelin S, Holsst JJ, Cuber C, Galmiche JP (2003) Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease. Gastroenterology 124: 894–902

    Article  PubMed  Google Scholar 

  102. Nagengast FM (1992) Dietary fibre and bile acid metabolism. In: Schweizer TF, Edwards CA (eds) Dietary fibre — a component of food. Nutritional function in health and disease. Springer, London, pp 217–231

    Google Scholar 

  103. Story JA, Furomoto EJ, Buhmann KK (1997) Dietary fiber and bile acid metabolism — an update. In: Kritchevsky D, Bonfield C (eds) Dietary fiber in health and disease. Plenum Press, New York London, pp 259–266

    Google Scholar 

  104. Adiotomre J, Eastwood MA, Edwards CA, Brydon WG (1990) Dietary fibre: in vitro methods that anticipate nutrition and metabolic activity in humans. Am Clin Nutr 52: 123–134

    Google Scholar 

  105. Gallaher D, Schneeman BO (1986) Intestinal interaction of bile acids, phopholipids, dietary fibers, and cholestyramine. Am J Physiol 250: G420-G426

    PubMed  CAS  Google Scholar 

  106. Langkilde AM, Anderson H, Bosaeus J (1993) Suger-beet fibre increases cholesterol and reduces bile acid excreation from the small bowel. Br J Nutr 70: 757–766

    Article  PubMed  CAS  Google Scholar 

  107. Christl SU, Bartram HP, Rückert A, Scheppach W, Kasper H (1995) Influence of starch fermentation on bile acid metabolism by colonic bacteria. Nutr Cancer 24: 67–75

    Article  PubMed  CAS  Google Scholar 

  108. Zumarraga L, Levitt MD, Suarez F (1997) Absence of gaseous symptoms during ingestion of commercial fibre preparations. Aliment Pharmacol Therapeut 11: 1067–1072

    Article  CAS  Google Scholar 

  109. Cooper SG, Tracey EJ (1989) Small bowel obstruction caused by oat bran bezoar. N Engl J Med 320: 1148–1149

    PubMed  CAS  Google Scholar 

  110. Kang JY, Doe WF (1979) Unprocessed bran causing intestinal obstruction. Br Med J 1: 1249–1250

    Article  PubMed  CAS  Google Scholar 

  111. Trepel F (2004) Ballaststoffe: mehr als ein Diätmittel. II. Präventive und therapeutische Anwendungen. Wien Klin Wochenschr 116 (in Druck)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Trepel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trepel, F. Ballaststoffe: Mehr als ein Diätmittel. Wien Klin Wochenschr 116, 465–476 (2004). https://doi.org/10.1007/BF03040941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040941

Key words

Schlüsselwörter

Navigation