Skip to main content
Log in

Chromosome banding in evolutionary plant cytogenetics

  • Published:
Proceedings / Indian Academy of Sciences

Abstract

The introduction of chromosome banding techniques for linear differentiation of chromosomes have allowed the identification of the heterochromatic segments on the chromosomes. These heterochromatic segments are primarily composed of repetitive DNA, which are discernible in the form of dark staining regions by Giemsa C band staining or exhibit enhanced or reduced fluorescent bands by Q banding techniques depending upon the particular type of DNA repetition. The analyses of banding patterns have allowed in plants, the identification of chromosomes or parts of chromosomes, which have been utilized for inter- and intra-species comparisons. Based on the information of banding patterns, amount and distribution of heterochromatic segments, coupled with karyotypic features and morphological similarities; the probable phylogenetic relationships in various plant taxa from Gymnosperms, Angiosperms (both dicots and monocots) have been suggested. The information on heterochromatin recognition have also been utilized in suggesting probable ancestry of polyploids and the trend of evolution in varietal differentiation and speciation. Analysing the data, a probable phylogenetic significance and the direction of change in heterochromatin evolution in plants is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arrighi F E, Hsu T C, Saunders F and Saunders G F 1970 Localization of repetitive DNA in the chromosomes ofMicrotus agrestis by means ofin situ hybridization;Chromosoma 32 224–236

    PubMed  CAS  Google Scholar 

  • Appels R and Peacock W J 1978 The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference toDrosophila;Int. Rev. Cytol. (Suppl.)8 69–126

    CAS  Google Scholar 

  • Badr A and Elkington T T 1977 Variation of Giemsa C-band and fluorochrome banded karyotypes, and relationship inAllium subgen.Molium;Plant Syst. Evol. 128 23–35

    Article  Google Scholar 

  • Blakey D H and Vosa C G 1981a Heterochromatin and chromosome variation in cultivated species ofTulipa, subg.Eriostemones (Liliaceae).Plant Syst. Evol. 139 47–55

    Article  Google Scholar 

  • Blakey D H and Vosa C G 1981b Heterochromatin and chromosome variation in cultivated species ofTulipa subg. Leistemones (Liliaceae)Plant Syst. Evol. 139 163–178

    Article  Google Scholar 

  • Bozzini A 1964 On the karyotypes of viviparous onion, known asAllium cepa L. var.viviparum (Metzg.) Alf;Caryologia 17 459–464

    Google Scholar 

  • Brown S W 1966 HeterochromatinScience 151 417–425

    Article  PubMed  CAS  Google Scholar 

  • Caldwell K A and Kasarda D D 1978 Assessment of genomic and species relationships inTriticum andAegilops by PAGE and by differential staining of seed albumins and globulins;Theor. Appl. Genet. 52 273–280

    Article  CAS  Google Scholar 

  • Cameron J R, Loh E Y and Davids R W 1979 Evidence for transposition of dispersed repetitive DNA families in yeast;Cell 16 739–751

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T 1976 Long palindromes in eukaryotic DNANature (London) 262 255–256

    Article  Google Scholar 

  • Comings D E 1975 Chromosome bandingHistochem.Cytochem. 23 461–462

    CAS  Google Scholar 

  • Comings D E, Avilino E, Okada T A and Wyandt H E 1973 The mechanism of C- and G-banding of chromosomes;Exp. Cell Res. 77 469–493

    Article  PubMed  CAS  Google Scholar 

  • Craig-Holmes A P, Moore F B and Shaw M W 1973 Polymorphism of human C-band heterochromatin I. Frequency of variants;Am. J. Hum. Genet. 25 181

    PubMed  CAS  Google Scholar 

  • Darlington C D 1963Chromosome botany and the origin of cultivated plants; (London: Allen and Unwin)

    Google Scholar 

  • De D N and Krishnan R 1966 Studies on pachytene and somatic chromosomes ofPhaseolus mungo L.,Genetica 37 581–587

    Article  Google Scholar 

  • De Candolle A 1886 Origin of cultivated plants Repr. sec. ed. 65et seq (New York: Hafner Publ. Co. 1959)

    Google Scholar 

  • Dekaprelevich L L 1971 Has West Georgia particular position in the Transcaucasion breeding ground?;Acta Agric. Sci. Hungaricae 20 208–211

    Google Scholar 

  • Deumling B 1981 Sequence arrangement of a highly methylated satellite DNA of a plant,Scilla: A tandemly repeated inverted repeat;Proc. Natl. Acad. Sci. (Washington)78 338–342

    Article  PubMed  CAS  Google Scholar 

  • Deumling B and Greilhuber J 1982 Characterisation of heterochromatin in different species ofScilla siberica group (Liliaceae) byin situ hybridization of satellite DNAs and fluorochrome banding;Chromosoma 84 535–555

    Article  CAS  Google Scholar 

  • Doolittle W F and Sapienza C 1980 Selfish genes, the phenotype paradigm and genome evolution;Nature (London) 284 601–603

    Article  CAS  Google Scholar 

  • Dover G 1977 Variation in genome organization in related species;Chromosomes Today 6 105–115

    Google Scholar 

  • Dover G and Doolittle W F 1980 Modes of genome evolution; Nature (London)288 646–647

    Article  CAS  Google Scholar 

  • El-Gadi A and Elkington T A 1975 Comparison of Giemsa C band karyotypes and the relationship ofAllium cepa, A. fistulosum, A. galanthum;Chromosoma 51 19–23

    Article  Google Scholar 

  • Filion W G 1974 Differential Giemsa staining in plants. I. Banding patterns in three cultivars ofTulipa;Chromosoma 49 51–60

    Article  Google Scholar 

  • Fiskesjo G 1975 Chromosomal relationships between three species ofAllium as revealed by C-banding;Hereditas 81 23–32

    Article  Google Scholar 

  • Flavell R Bet al 1980Genome organization and expression in plants (New York: Plenum)

    Google Scholar 

  • Fuhrmann B and Nagl W 1979 Chromatin organization and repetitive DNA inAnacyclus andAnthemis (Asteraceae);Plant Syst. Evol. (Suppl.) 2 235–245

    Google Scholar 

  • Funaki K, Matsui S and Sasaki M 1975 Location of nucleolar organizers in animal and plant chromosomes by means of an improved N-banding technique;Chromosoma 62 49–56

    Google Scholar 

  • Gill B S and Kimber G 1974 Giemsa C banding and the evolution of wheat;Proc. Natl. Acad. Sci., USA71 4086–4090

    Article  PubMed  CAS  Google Scholar 

  • Gilot-Delhalle J, Degraeve N and Moutschen J 1976 Cytotaxonomic investigation of the genusNigella (Helleboreae) with C-banding techniques;Caryologia 29 139–154

    Google Scholar 

  • Greilhuber J 1973 Differential staining of plant chromosomes after hydrochloric acid treatments (Hybands)Osterr. Bot. Z. 122 333–351

    Article  Google Scholar 

  • Greilhuber J 1977 Nuclear DNA and heterochromatin contents in theScilla hohenackeri group,S. persica, andPuschkinia scillodes (Liliaceae);Plant Syst. Evol. 128 243–257

    Article  Google Scholar 

  • Greilhuber J 1978 DNA contents, Giemsa banding, and systematics inScilla bifolia, S. drunensis, andS. vindobonensis (Liliaceae);Plant Syst. Evol. 130 223–233

    Article  Google Scholar 

  • Greilhuber J 1979 Evolutionary changes of DNA and heterochromatin amounts in theScilla bifolia group (Liliaceae);Plant Syst. Evol. (Suppl.) 2 263–280

    Google Scholar 

  • Greilhuber J and Speta F 1976 C-banded karyotypes in theScilla hohenackeri group,S. persica, andPuschkinia (Liliaceae);Plant Syst. Evol. 126 149–188

    Article  Google Scholar 

  • Greilhuber J and Speta F 1977 Giemsa karyotypes and their evolutionary significance inScilla bifolia, S. vindobonensis (Liliaeceae);Plant Syst. Evol. 127 171–190

    Article  Google Scholar 

  • Greilhuber J and Specta F 1978 Quantitative analysis of C-banded karyotypes, and systematics in the cultivated species of theScilla siberica group (Liliaceae);Plant Syst. Evol. 129 63–109

    Article  Google Scholar 

  • Hadlaczky G and Belea A 1975 C-banding in wheat evolutionary cytogenetics;Plant Sci. Lett. 4 85–88

    Article  Google Scholar 

  • Hall A D 1940 The genusTulipa; (Aberdeen: Royal Hortic. Soc.)

    Google Scholar 

  • Hunt D R 1975 Notes onGibasis American Commelinanceae II;Kew Bull. 30 709–714

    Article  Google Scholar 

  • Iordansky A B, Zurabishivili T G and Badaev N S 1978 Linear differentiation of cereal chromosomes. I. Common wheat and its supposed ancestors;Theor. Appl. Genet. 51 145–152

    Article  Google Scholar 

  • Jain H K 1980Incidental DNA Nature (London) 288 647–648

    Article  CAS  Google Scholar 

  • Jasaka V and Jasaka V 1970 Biochemical data on the origin of the Transcaucasian endemic wheats;Eesti NSV teaduste akadeemia Toimetised (Biologiline seeria) 19 344–354

    Google Scholar 

  • Johnson B L 1972 Protein electrophoretic profiles and the origin of the B genome of wheat;Proc. Natl. Acad. Sci., USA 69 912–915

    Article  Google Scholar 

  • John B and Miklos G L G 1979 Functional aspects of satellite DNA and heterochromatin;Int. Rev. Cytol. 58 1–114

    Article  PubMed  CAS  Google Scholar 

  • Kenton A 1978 Giemsa C banding inGibasis (Commelinaceae);Chromosoma 65 309–324

    Article  Google Scholar 

  • Khush G S 1963 Cytogenetic and evolutionary studies inSecale. IVSecale vavuovii and its biosystematic status;Z. Pflanzenzuchtg. 50 34–43

    Google Scholar 

  • Kollman F and Stearn W T 1975 Note:Allium trifoliatum subsp.hirsutum;Israel J. Bot. 24 201–204

    Google Scholar 

  • Krishnan R and De D N 1965 Studies on pachytene and somatic chromosomes ofPhaseolus aureus;Nucleus 8 7–16

    Google Scholar 

  • Kupila-Ahvenniemi S and Hohtola A 1977 Structure of the chromosomes of Scotch Pine;Hereditas 87 185–188

    Article  Google Scholar 

  • Kurita M 1958 Heterochromaty inAllium chromosomes;Mem. Ehime Univ. Sect. II Ser. B. 3 23–28

    Google Scholar 

  • Kurita M 1963 Heterochromaty in chromosomes ofAllium aobanum;Chromosome Information Service 4 4–5

    Google Scholar 

  • LaCour L F 1978. Two types of constitutive heterochromatin in the chromosomes of someFritillaria species.Chromosoma 67 67–75

    Article  CAS  Google Scholar 

  • Larsen J 1973 The role of chromosomal interchanges in the evolution of hexaploid wheat,Triticum aestivum; Proc. 4th Inst. Wheat Genetics Symp. 87–93

  • Lavania U C 1978 Differential staining and plant chromosomes — a progress in cytogenetics;Curr. Sci. 47 255–260

    Google Scholar 

  • Lavania U C and Sharma A K 1980 Giemsa C banding inLathyrus L;Bot. Gaz. 141 199–203

    Article  Google Scholar 

  • Lavania U C and Sharma A K 1981 Giemsa C banding inVicia L;J. Indian Bot. Soc. 60

  • Lavania U C and Sharma A K 1982 Heterochromatin in perspective;Curr. Sci. 51 175–180

    CAS  Google Scholar 

  • Lavania U C and Lavania S 1982 Chromosome banding patterns in some Indian pulses;Ann. Bot. 49 235–239

    Google Scholar 

  • Levan A 1937 Cytological studies in theAllium paniculatum group;Hereditas 23 317–370

    Google Scholar 

  • Lisanti J A and Stockert J C 1973 Observations on the staining of centromeric heterochromatin with Giemsa;Experientia 29 887–888

    Article  PubMed  CAS  Google Scholar 

  • Linde-Laursen I 1975 Giemsa C-banding of Chromosomes of ‘Emer’ barley;Hereditas 81 285–289

    Article  Google Scholar 

  • Linde-Laursen I 1978a Giemsa C-banding of barley chromosomes I. Banding pattern polymorphism;Hereditas 88 55–64

    Article  Google Scholar 

  • Linde-Laursen I 1978b Giemsa C-banding of barley chromosomes II. Banding patterns of trisomics and telotrisomics;Hereditas 89 37–41

    Article  Google Scholar 

  • Linde-Laursen I, Bothmer R V and Jacobsen N 1980. Giemsa C-banding in Asiatic taxa ofHordeum sectionStenostachys with notes on chromosome morphology;Hereditas 93 235–254

    Article  Google Scholar 

  • Marks G E and Schweizer D 1974 Giemsa banding: Karyotype differences in some species ofAnemone and inHepatica nobilis;Chromosoma 44 405–416

    Article  Google Scholar 

  • MacPherson P and Filion W G 1981 Karyotype analysis and the distribution of constitutive heterochromatin in five species ofPinus;J. Hered. 72 193–198

    Google Scholar 

  • Mac Key J 1966 Species relationships inTriticum;Hereditas (Suppl.) 2 237–276

    Google Scholar 

  • Mac Key J 1968 The genetic background of the systematics of wheats;Selskochoz. Biol. 3 12–25

    Google Scholar 

  • Nagl W and Ehrendorfer F 1974 DNA content, heterochromatin, mitotic index and growth in perennial and annual Anthemideae (Asteraceae);Plant Syst. Evol. 123 35–54

    Article  Google Scholar 

  • Narayan R K J and Rees H 1976 Nuclear DNA variation inLathyrus;Chromosoma 54 141–154

    Article  CAS  Google Scholar 

  • Natarajan A T and Sarma N P 1974 Chromosome banding patterns and the origin of the B genome in wheat;Genet. Res. 24 103–108

    Article  Google Scholar 

  • Noda K and Kasha K J 1978 A proposed barley karyotype revision based on C-band chromosome identification;Crop Sci. 18 925–930

    Article  Google Scholar 

  • Orgel L E and Crick F H C 1980 Selfish DNA: the ultimate parasite;Nature (London) 284 604–607

    Article  CAS  Google Scholar 

  • Pachmann U and Rigler R 1972 Quantum yield of acridine interaction with DNA of definite base sequence — A basis for the explanation of acridine bands in chromosomes;Exp. Cell Res. 72 602–608

    Article  PubMed  CAS  Google Scholar 

  • Pathak S N 1978 Natural and induced polymorphism of constitutive heterochromatin in mammals;Nucleus 21 12–21

    Google Scholar 

  • Peacock W J, Lohe A R, Gerlach W L, Dunsmuir P, Dennis E S and Appels R 1977 Fine structure and evolution of DNA in heterochromatin;Cold Spring Harbour Symp. Quant. Biol. 42 1121–1135

    Google Scholar 

  • Price H J 1976 Evolution of DNA content in higher plants;Bot. Rev. 42 27–52

    Article  CAS  Google Scholar 

  • Potter S S, Brorein W J, Dunsmuir P and Rubin G M 1979 Transposition of elements of the 412, copia and 297 dispersed repeated gene families inDorsophilia;Cell 17 415–427

    Article  PubMed  CAS  Google Scholar 

  • Rees H and Hazarika M H 1969 Chromosome evolution inLathyrus;Chromosomes Today 2 158–165

    Google Scholar 

  • Rees H and Narayan R K J 1977 Evolutionary DNA variation inLathyrus;Chromosomes Today 6 131–139

    CAS  Google Scholar 

  • Rees H and Walters M R 1965 Nuclear DNA and the evolution of wheat;Heredity 20 73–82

    Article  CAS  Google Scholar 

  • Riley R 1955 The cytogenetics of differences between someSecale species;J. Agric. Sci. 46 377–383

    Article  Google Scholar 

  • Riley R, Coucoli H and Chapman V 1967 Chromosomal interchanges and the phylogeny of wheat;Heredity 22 233–248

    Article  Google Scholar 

  • Roy R P and Singh M K 1967 Cytological studies in the genusLathyrus Linn;J. Cytol. Genet. 2 128

    Google Scholar 

  • Sachan J K S and Tanaka R 1977 Variation and pattern of C-banding inZea chromosomes; Nucleus20 61–64

    Google Scholar 

  • Salser W, Bowen S, Browne D, Adler F E, Federoff N, Fry K, Hindell H, Paddock G, Poon G, Wallace B and Whitcome B 1976 Investigation of the organization of mammalian chromosomes at the DNA sequence level;Fed. Proc. 35 23–25

    PubMed  CAS  Google Scholar 

  • Sarkar P and Stebbins G L 1956 Morphological evidence concerning the origin of the B genome in wheat;Am. J. Bot. 43 297–304

    Article  Google Scholar 

  • Schlarbaum S E and Tsuchia T 1981 Differential reactivity to staining in tree chromosomes;J. Hered. 72 62–63

    Google Scholar 

  • Schwarzacher H G 1976Chromosomes in mitosis and interphase (Berlin: Springer-Verlag)

    Google Scholar 

  • Schweizer D 1973 Differential staining of plant chromosomes with Giemsa;Chromosoma 40 307–320

    Article  Google Scholar 

  • Schweizer D and Ehrendorfer F 1976 Giemsa banded karyotypes, systematics, and evolution inAnacyclus (Asteraceae — Anthemideae);Plant Syst. Evol. 126 107–148

    Article  Google Scholar 

  • Sears E R 1954 The aneuploides of common wheat;Missouri Agric. Exp. Sta. Res. Bull. 572 3–59

    Google Scholar 

  • Sears E R 1969 Wheat cytogenetics;Ann. Rev. Genet. 3 451–458

    Article  Google Scholar 

  • Sharma A K 1975 Chromosome banding and repeated DNA;J. Indian Bot. Soc. 54 1–8

    CAS  Google Scholar 

  • Sharma A K 1978a Additional genetic elements in chromosomes;Nucleus 21 113–116

    CAS  Google Scholar 

  • Sharma A K 1978b Change in chromosome concept;Proc. Indian Acad. Sci. (Plant Sci.) B87 161–190

    Article  Google Scholar 

  • Singh R J and Robbelen G 1975 Comparison of somatic Giemsa banding pattern in several species of rye;Z. Pflanzenzuchtg. 75 85–89

    Google Scholar 

  • Singh R J and Robbelen G 1977 Identification by Giemsa technique of the translocation separating cultivated rye from three wild species ofSecale;Chromosoma 59 217–225

    Article  Google Scholar 

  • Smartt J 1980 Evolution and evolutionary problems in food legumes;Econ. Bot. 34 219–235

    Google Scholar 

  • Smith G P 1974 Unequal crossover and the evolution of multi-gene families;Cold Spring Harbor Symp. Quant. Biol. 38 507–513

    PubMed  CAS  Google Scholar 

  • Smith G P 1976 Evolution of repeated DNA sequence by unequal crossover;Science 191 528

    Article  PubMed  CAS  Google Scholar 

  • Southern D I 1967 Species relationships in the genusTulipa;Chromosoma 23 80–94

    Article  Google Scholar 

  • Southern E M 1970 Base sequence and evolution of guinea pig satellite DNA:Nature (London) 227 794–798

    Article  CAS  Google Scholar 

  • Speta F 1974 Cytotaxonomische und arealkundliche untersuschungen an derScilla bifolia —Gruppe in Oberösterreich, Niederösterreich und Wien;Naturk. Jahrb. Stadt. Linz. 19 9–54

    Google Scholar 

  • Speta F 1976 Uber Chinodoxa Boiss, ihre Gliederung und Zugehörigkeit zuScilla L;Naturk. Jahrb. Stadt. Linz. 21 9–79

    Google Scholar 

  • Stebbins G L 1966 Chromosomal variation and evolution;Science 152 1463–1469

    Article  PubMed  CAS  Google Scholar 

  • Stebbins G L 1971Chromosomal evolution in higher plants; (London: Edward Arnold)

    Google Scholar 

  • Stucky J and Jackson R C 1975 DNA content of seven species of Astereae and its significance to theories of chromosome evolution in the tribe;Am. J. Bot. 62 509–518

    Article  Google Scholar 

  • Sugawara T 1981 Taxonomic studies ofAsarum sensu lato I. Karyotype and C-banding pattern inAsarum S. str.,Asiasarum and Heterotropa;Bot. Mag. (Tokyo)94 225–238

    Article  Google Scholar 

  • Tanaka R and Hizume M 1980 C-banding treatment for the chromosomes of some gymnosperms;Bot Mag. 93 167–170

    Article  Google Scholar 

  • Traub H P 1968 The subgenera, sections and subsections ofAllium L;Plant Life 24 147–163

    Google Scholar 

  • Ved Brat S 1965 Genetic systems inAllium I. Chromosome variation;Chromosoma 30 366–372

    Google Scholar 

  • Verma S C 1978 Proximal localization of constitutive heterochromatin in legumeLathyrus tingitanus;Nucleus 21 125–131

    Google Scholar 

  • Vosa C G 1970 Heterochromatin recognition with fluorochromes;Chromosoma 30 366–372

    Article  Google Scholar 

  • Vosa C G 1975 The use of Giemsa and other staining techniques in karyotype analysis;Curr. Adv. Plant Sci. 14 495–510

    Google Scholar 

  • Vosa C G 1976a Heterochromatic patterns inAllium I. The relationship between the species of theCepa group and its allies;Heredity 36 383–392

    Article  Google Scholar 

  • Vosa C G 1976b Heterochromatic banding patterns inAllium II. Heterochromatic variation in species of thePaniculatum group;Chromosoma 57 119–133

    Article  Google Scholar 

  • Vosa C G 1976c Chromosome banding patterns in cultivated and wild barleys (Hordeum spp.);Heredity 37 395–403

    Article  Google Scholar 

  • Vosa C G 1977 Heterochromatic patterns and species relationship;Nucleus 20 33–41

    Google Scholar 

  • Vosa C G and Marchi P 1972 Quinacrine fluorescence and Giemsa staining in plants;Nature (New Biol.) 237 191–192

    CAS  Google Scholar 

  • Walker P M B 1971 “Repetitive” DNA in higher organisms; inProgress in biophysics and molecular biology; (eds.) J A V Butler and D Noble (Elmsford, New York: Pergamon) Vol.23 145

    Google Scholar 

  • Weisblum B and de Haseth P L 1973 Quinacrine: a chromosome stain specific for deoxyadenylate deoxythymidylate — rich regions of DNA;Proc. Natl. Acad. Sci. USA 69 629–632

    Article  Google Scholar 

  • Wochok Z S, Andreasson J and Klungness L M 1980 Giemsa banding in chromosomes of Douglas Fir seedlings and Plantlets;Ann. Bot. 46 249–254

    Google Scholar 

  • Zurabishivili T G, Iordansky A B and Badaev N S 1978 Linear differentiation of cereal chromosomes II. Polyploid wheats;Theor. Appl. Genet. 51 201–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavania, U.C., Sharma, A.K. Chromosome banding in evolutionary plant cytogenetics. Proc. Indian Acad. Sci. 92, 51–79 (1983). https://doi.org/10.1007/BF03052984

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03052984

Keywords

Navigation