Skip to main content
Log in

A tilted rotatory frame method for the measurement of nuclear spin diffusion coefficients in solids doped with paramagnetic centers: Mn-Doped CaF2

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) experiments recording the recovery of the magnetization of the nuclei in one phase, following the excitation of the nuclei in the other phase, is a classical way of studying blends inhomogeneous at the nanometer scale. Interpretation of the time recovery in terms of the spatial dimension requires knowledge of the two-phase spin diffusion coefficientsD 0. A new method of measurement ofD 0 is proposed on the basis of variable angle-tilted rotatory frame relaxation in homogeneous samples doped with paramagnetic centers. The choice of the tilt angle allows one to finely balance the direct relaxation by the paramagnetic center and the spin diffusion. The shape of the relaxation is analyzed with the solution for the diffusion-limited regimeM(t)/M(0)=exp[−(r 2 t)1/2r 1 t] andD 0 then calculated fromr 1,r 2 and the concentration of paramagnetic centers. Conditions where reliable results can be obtained both theoretically and numerically are explored. The method has been implemented and applied to polycrystalline Mn-doped CaF2 leading toD 0=540±60 nm2/s, in agreement with existing values on this model compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. VanderHart D.L., McFadden G.B.: Solid State Nucl. Magn. Reson.7, 45–66 (1996)

    Article  Google Scholar 

  2. Schmidt-Rohr K., Spiess H.W.: Multidimensional Solid-State NMR and Polymers. London: Academic Press 1994.

    Google Scholar 

  3. Mc Brierty V.J., Packer K.J.: Nuclear Magnetic Resonance in Solid Polymers, chapt. 6. Cambridge: Cambridge University Press 1993.

    Google Scholar 

  4. Goldman M., Shen L.: Phys. Rev.144, 321–331 (1966)

    Article  ADS  Google Scholar 

  5. Landfester K., Boeffel C., Lambla M., Spiess H.W.: Macromolecules29, 5972–5980 (1996)

    Article  ADS  Google Scholar 

  6. Caravatti P., Neuenschwander P., Ernst R.R.: Macromolecules19, 1889–1895 (1986)

    Article  ADS  Google Scholar 

  7. Ernst M., Meier B.H. in: Solid State NMR of Polymers (Ando I., Asakura T. eds.), pp. 83–121. Amsterdam: Elsevier 1998 (Studies in Physical and Theoretical Chemistry, vol. 84)

    Google Scholar 

  8. Blumberg W.E.: Phys. Rev.119, 79–84 (1960)

    Article  ADS  Google Scholar 

  9. Wang J.H., Jack K.S., Natansohn A.L.: J. Chem. Phys.107, 1016–1020 (1997)

    Article  ADS  Google Scholar 

  10. Lowe L.J., Gade S.: Phys. Rev.156, 817–825 (1967)

    Article  ADS  Google Scholar 

  11. Redfield A.G., Yu W.N.: Phys. Rev.169, 443–450 (1968); ibid. Redfield A.G., Yu W.N.:177, 1018 (1969)

    Article  ADS  Google Scholar 

  12. Borckmans P., Walgraef D.: Phys. Rev.167, 282–288 (1968)

    Article  ADS  Google Scholar 

  13. Tang C., Waugh J.S.: Phys. Rev. B45, 748–754 (1992)

    Article  ADS  Google Scholar 

  14. Packer K.J., Pope J.M., Yeung R.R.: J. Polym. Sci. B Polym. Phys.22, 589–616 (1984)

    Google Scholar 

  15. Clauss J., Schmidt-Rohr K., Spiess H.W.: Acta Polym.44, 1–17 (1993)

    Article  Google Scholar 

  16. Spiegel S., Schmidt-Rohr K., Boeffel C., Spiess H.W.: Polymer34, 4566–4569 (1993)

    Article  Google Scholar 

  17. Douglass D.C., Jones G.P.: J. Chem. Phys.45, 956–963 (1966)

    Article  ADS  Google Scholar 

  18. Havens J.R., VanderHart D.L.: Macromolecules18, 1663–1676 (1985)

    Article  ADS  Google Scholar 

  19. Mellinger F., Wilhelm M., Spiess H.W.: Macromolecules32, 4686–4691 (1999)

    Article  ADS  Google Scholar 

  20. Cheung T.T.P., Gerstein B.C., Ryan L.M., Taylor R.E., Dybowski C.R.: J. Chem. Phys.73, 6059–6067 (1980)

    Article  ADS  Google Scholar 

  21. Hu W.G., Zimmermann H., Schmidt-Rohr K.: Appl. Magn. Reson.17, 1197–1209 (1999)

    Article  Google Scholar 

  22. Zhang W.R., Cory D.G.: Phys. Rev. Lett.80, 1324–1327 (1998)

    Article  ADS  Google Scholar 

  23. Zhang W.R., Cory D.G.: J. Magn. Reson.132, 144–149 (1998)

    Article  ADS  Google Scholar 

  24. Gates J.V., Potter W.H.: Phys. Rev. B15, 4143–4148 (1977)

    Article  ADS  Google Scholar 

  25. Lowe I.J., Tse D.: Phys. Rev.166, 279–291 (1968)

    Article  ADS  Google Scholar 

  26. Tse D., Lowe I.J.: Phys. Rev.166, 292–302 (1968)

    Article  ADS  Google Scholar 

  27. Tabti T., Goldman M., Jacquinot J.F., Fermon C., LeGoff G.: J. Chem. Phys.107, 9239–9251 (1997)

    Article  ADS  Google Scholar 

  28. Tabti T.: Thèse de doctorat de l’Université de Paris XI, Paris, France, 1995.

  29. Vincent S.J.F., Bodenhausen G.: Appl. Magn. Reson.17, 186–196 (1999)

    Article  Google Scholar 

  30. Desvaux H., Berthault P., Birlirakis N.: Chem. Phys. Lett.233, 545–549 (1995)

    Article  ADS  Google Scholar 

  31. Gösele U.: Physica B&C185, 317–322 (1976)

    Article  Google Scholar 

  32. Bloembergen N.: Physica15, 386–426 (1949)

    Article  ADS  Google Scholar 

  33. Abragam A.: The Principles of Nuclear Magnetism. Oxford: Clarendon Press 1961.

    Google Scholar 

  34. Khutsishvili G.R.: Prog. Low Temp. Phys.6, 375–404 (1970)

    Article  Google Scholar 

  35. de Gennes P.G.: J. Phys. Chem. Solids3, 345–350 (1958)

    Google Scholar 

  36. Booth R.J., McGarvey B.R.: Phys. Rev. B21, 1627–1635 (1980)

    Article  ADS  Google Scholar 

  37. Rorschach H.E. Jr.: Physica30, 38–48 (1964)

    Article  ADS  Google Scholar 

  38. Horvitz E.P.: Phys. Rev. B3, 2868–2872 (1971)

    Article  ADS  Google Scholar 

  39. Nevzorov A.A., Freed J.H.: J. Chem. Phys.115, 2416–2429 (2001)

    Article  ADS  Google Scholar 

  40. Wolfe J.P., Markiewzc R.S.: Phys. Rev. Lett.30, 1105–1107 (1973)

    Article  ADS  Google Scholar 

  41. Eaton S.S. in: Distance Measurements in Biological Systems by EPR (Berliner L.J., Eaton G.R., Eaton S.S., eds.), p. 68. New York: Kluwer Academic/Plenum Publishers 2000 (Biological Magnetic Resonance, vol. 19)

    Google Scholar 

  42. Furman G.B., Kunoff E.M., Goren S.D., Pasquier V., Tinet D.: Phys. Rev. B52, 182–187 (1995)

    Article  Google Scholar 

  43. Lin N.A., Hartmann S.R.: Phys. Rev. B8, 4079–4085 (1973)

    Article  ADS  Google Scholar 

  44. Jones G.P.: Phys. Rev.148, 332–336 (1966)

    Article  ADS  Google Scholar 

  45. Goldman M., Jacquinot J.F.: J. Phys. Paris43, 1049–1058 (1982)

    Google Scholar 

  46. Akhmedov A.G., Dautov R.A.: Sov. Phys. Solid State6, 415–417 (1963)

    Google Scholar 

  47. Leppelmeier G.W., Jeener J.: Phys. Rev.175, 498–502 (1968)

    Article  ADS  Google Scholar 

  48. Gerstein B.C., Dybowski C.R.: Transient Techniques in NMR of Solids. London: Academic Press 1985.

    Google Scholar 

  49. Richardson R.J., Sook Lee, Menne T.J.: Phys. Rev. B4, 3837–3845 (1971)

    Article  ADS  Google Scholar 

  50. Hansen A.D.A., Wolfe J.P.: Phys. Lett. A66, 320–322 (1978)

    Article  ADS  Google Scholar 

  51. Mc Nally J.M., Kreilick R.W.: J. Phys. Chem.86, 421–428 (1982)

    Article  Google Scholar 

  52. Blanchard C., Gaillard B., Deville A.: J. Phys. Paris40, 1179–1184 (1979)

    Google Scholar 

  53. Du J.L., Eaton G.R., Eaton S.S.: J. Magn. Reson. A115, 213–221 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meurer, B., Weill, G. A tilted rotatory frame method for the measurement of nuclear spin diffusion coefficients in solids doped with paramagnetic centers: Mn-Doped CaF2 . Appl. Magn. Reson. 23, 133–147 (2002). https://doi.org/10.1007/BF03166191

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166191

Keywords

Navigation