Skip to main content
Log in

Vitamin C transporters

  • Minireviews
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Vitamin C is a wide spectrum antioxidant essential for humans, which are unable to synthesize the vitamin and must obtain it from dietary sources. There are two biologically important forms of vitamin C, the reduced form, ascorbic acid, and the oxidized form, dehydroascorbic acid. Vitamin C exerts most of its biological functions intracellularly and is acquired by cells with the participation of specific membrane transporters. This is a central issue because even in those species capable of synthesizing vitamin C, synthesis is restricted to the liver (and pancreas) from which is distributed to the organism. Most cells express two different transproter systems for vitamin C; a transporter system with absolute specificity for ascorbic acid and a second system that shows absolute specificity for dehydroascorbic acid. The dehydroascorbic acid transporters are members of the GLUT family of facilitative glucose transporters, of which at least three isoforms, GLUT1, GLUT3 and GLUT4, are dehydroascorbic acid transporters. Ascorbic acid is transported by the SVCT family of sodium-coupled transporters, with two isoforms molecularly cloned, the transporters SVCT1 y SVCT2, that show different functional properties and differential cell and tissue expression. In humans, the maintenance of a low daily requirement of vitamin C is attained through an efficient system for the recycling of the vitamin involving the two families of vitamin C transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramson, J., Kaback, H.R., & Iwata, S. (2004): Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.Curr Opin Struct Biol,14, 413–419.

    CAS  PubMed  Google Scholar 

  2. Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H.R., & Iwata, S. (2003): Structure and mechanism of the lactose permease of Escherichia coli.Science,301, 610–615.

    CAS  PubMed  Google Scholar 

  3. Agus, D.B., Gambhir, S.S., Pardridge, W.M., Spielholz, C., Baselga, J., Vera, J. C., & Golde, D.W. (1997): Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters.J Clin Invest,100, 2842–2848.

    CAS  PubMed  Google Scholar 

  4. Agus, D.B., Vera, J.C., & Golde, D.W. (1999): Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.Cancer Res,59, 4555–4558.

    CAS  PubMed  Google Scholar 

  5. Alvarez, J., Lee, D.C., Baldwin, S.A., & Chapman, D. (1987): Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter.J Biol Chem,262, 3502–3509.

    CAS  PubMed  Google Scholar 

  6. Angulo, C., Rauch, M.C., Droppelmann, A., Reyes, A.M., Slebe, J.C., Delgado-Lopez, F., Guaiquil, V.H., Vera, J.C., & Concha, II (1998): Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.J Cell Biochem,71, 189–203.

    CAS  PubMed  Google Scholar 

  7. Arbuckle, M.I., Kane, S., Porter, L.M., Seatter, M.J., & Gould, G.W. (1996): Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity,Biochemistry,35, 16519–16527.

    CAS  PubMed  Google Scholar 

  8. Asano, T., Katagiri, H., Takata, K., Lin, J.L., Ishihara, H., Inukai, K., Tsukuda, K., Kikuchi, M., Hirano, H., Yazaki, Y., &et al. (1991): The role of N-glycosylation of GLUT1 for glucose transport activity.J Biol Chem,266, 24632–24636.

    CAS  PubMed  Google Scholar 

  9. Augustin, R., Carayannopoulos, M.O., Dowd, L.O., Phay, J.E., Moley, J.F., & Moley, K.H. (2004): Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking.J Biol Chem,279, 16229–16236.

    CAS  PubMed  Google Scholar 

  10. Axelrod, J.D. & Pilch, P.F. (1983): Unique cytochalasin B binding characteristics of the hepatic glucose carrier.Biochemistry,22, 2222–2227.

    CAS  PubMed  Google Scholar 

  11. Baldwin, S.A., Barros, L.F., Griffiths, M., Ingram, J., Robbins, E.C., Streets, A.J., & Saklatvala, J. (1997): Regulation of GLUT1 in response to cellular stress.Biochem Soc Trans,25, 954–958.

    CAS  PubMed  Google Scholar 

  12. Basketter, D.A. & Widdas, W.F. (1978): Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.J Physiol,278, 389–401.

    CAS  PubMed  Google Scholar 

  13. Berger, U.V., Lu, X.C., Liu, W., Tang, Z., Slusher, B.S., & Hediger, M.A. (2003): Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT2 in rat brain.J Neurochem,86, 896–906.

    CAS  PubMed  Google Scholar 

  14. Biondi, C., Pavan, B., Dalpiaz, A., Medici, S., Lunghi, L., & Vesce, F. (2007): Expression and characterization of vitamin C transporter in the human trophoblast cell line HTR-8/S Vneo: effect of steroids, flavonoids and NSAIDs.Mol Hum Reprod,13, 77–83.

    CAS  PubMed  Google Scholar 

  15. Burant, C.F., Takeda, J., Brot-Laroche, E., Bell, G. I., & Davidson, N. O. (1992): Fructose transporter in human spermatozoa and small intestine is GLUT5.J Biol Chem,267, 14523–14526.

    CAS  PubMed  Google Scholar 

  16. Capellmann, M., Becka, M., & Bolt, H.M. (1994): A note on distribution of human plasma levels of ascorbic and dehydroascorbic acid.J Physiol Pharmacol,45, 183–187.

    CAS  PubMed  Google Scholar 

  17. Capilla, E., Suzuki, N., Pessin, J.E., & Hou, J.C. (2007): The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartment.Mol Endocrinol,21, 3087–3099.

    CAS  PubMed  Google Scholar 

  18. Carr, A. & Frei, B. (1999): Does vitamin C act as a pro-oxidant under physiological conditions?Faseb J,13, 1007–1024.

    CAS  PubMed  Google Scholar 

  19. Carr, A.C. & Frei, B. (1999): Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans.Am J Clin Nutr,69, 1086–1107.

    CAS  PubMed  Google Scholar 

  20. Carruthers, A. & Helgerson, A.L. (1989): The human erythrocyte sugar transporter is also a nucleotide binding protein.Biochemistry,28, 8337–8346.

    CAS  PubMed  Google Scholar 

  21. Chatterjee, I.B. (1973): Evolution and the biosynthesis of ascorbic acid.Science,182, 1271–1272.

    CAS  PubMed  Google Scholar 

  22. Chatterjee, I.B. & McKee, R.W. (1964): Biosynthesis of L-Ascorbic Acid in Liver Microsomes from Mice Bearing Transplanted Tumors.Proc Soc Exp Biol Med,117, 304–306.

    CAS  PubMed  Google Scholar 

  23. Coassin, M., Tomasi, A., Vannini, V., & Ursini, F. (1991): Enzymatic recycling of oxidized ascorbate in pig heart: one-electron vs two-electron pathway.Arch Biochem Biophys,290, 458–462.

    CAS  PubMed  Google Scholar 

  24. Concha, II, Velasquez, F.V., Martínez, J.M., Angulo, C., Droppelmann, A., Reyes, A.M., Slebe, J.C., Vera, J.C., & Golde, D.W. (1997): Human erythrocytes express GLUT5 and transport fructose.Blood,89, 4190–4195.

    CAS  PubMed  Google Scholar 

  25. Corpe, C.P., Bovelander, F.J., Munoz, C.M., Hoekstra, J.H., Simpson, I.A., Kwon, O., Levine, M., & Burant, C.F. (2002): Cloning and functional characterization of the mouse fructose transporter, GLUT5.Biochim Biophys Acta,1576, 191–197.

    CAS  PubMed  Google Scholar 

  26. Coucke, P.J., Willaert, A., Wessels, M.W., Callewaert, B., Zoppi, N., De Backer, J., Fox, J.E., Mancini, G.M., Kambouris, M., Gardella, R., Facchetti, F., Willems, P.J., Forsyth, R., Dietz, H.C., Barlati, S., Colombi, M., Loeys, B., & De Paepe, A. (2006): Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome.Nat Genet,38, 452–457.

    CAS  PubMed  Google Scholar 

  27. Daruwala, R., Song, J., Koh, W.S., Rumsey, S.C., & Levine, M. (1999): Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2.FEBS Lett,460, 480–484.

    CAS  PubMed  Google Scholar 

  28. Dawson, P.A., Mychaleckyj, J.C., Fossey, S.C., Mihic, S.J., Craddock, A. L., & Bowden, D. W. (2001): Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1.Mol Genet Metab,74, 186–199.

    CAS  PubMed  Google Scholar 

  29. Doege, H., Bocianski, A., Scheepers, A., Axer, H., Eckel, J., Joost, H. G., & Schurmann, A. (2001): Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle.Biochem J,359, 443–449.

    CAS  PubMed  Google Scholar 

  30. Drera, B., Guala, A., Zoppi, N., Gardella, R., Franceschini, P., Barlati, S., & Colombi, M. (2007). Two novel SLC2A10/GLUT10 mutations in a patient with arterial tortuosity syndrome.Am J Med Genet A,143, 216–218.

    PubMed  Google Scholar 

  31. Eck, P., Erichsen, H.C., Taylor, J.G., Yeager, M., Hughes, A.L., Levine, M., & Chanock, S. (2004): Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2.Hum Genet,115, 285–294.

    CAS  PubMed  Google Scholar 

  32. Erichsen, H.C., Engel, S.A., Eck, P.K., Welch, R., Yeager, M., Levine, M., Siega-Riz, A.M., Olshan, A. F., & Chanock, S.J. (2006): Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2 and risk for preterm delivery.Am J Epidemiol,163, 245–254.

    PubMed  Google Scholar 

  33. Faaland, C.A., Race, J.E., Ricken, G., Warner, F.J., Williams, W.J., & Holtzman, E.J. (1998): Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters.Biochim Biophys Acta,1442, 353–360.

    CAS  PubMed  Google Scholar 

  34. Fujita, I., Hirano, J., Itoh, N., Nakanishi, T., & Tanaka, K. (2001): Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1.Br J Nutr,86, 145–149.

    CAS  PubMed  Google Scholar 

  35. García, J.C., Strube, M., Leingang, K., Keller, K., & Mueckler, M. M. (1992): Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes.J Biol Chem,267, 7770–7776.

    PubMed  Google Scholar 

  36. Godoy, A., Ormazabal, V., Moraga-Cid, G., Zuniga, F.A., Sotomayor, P., Barra, V., Vasquez, O., Montecinos, V., Mardones, L., Guzman, C., Villagran, M., Aguayo, L.G., Onate, S.A., Reyes, A.M., Carcamo, J.G., Rivas, C.I., & Vera, J.C. (2007). Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations.J Biol Chem,282, 615–624.

    CAS  PubMed  Google Scholar 

  37. Gordon, N., & Newton, R.W. (2003): Glucose transporter typel (GLUT-1) deficiency.Brain Dev,25, 477–480.

    PubMed  Google Scholar 

  38. Gorovits, N., Cui, L., Busik, J.V., Ranalletta, M., Hauguel de-Mouzon, S., & Charron, M.J. (2003): Regulation of hepatic GLUT8 expression in normal and diabetic models.Endocrinology,144, 1703–1711.

    CAS  PubMed  Google Scholar 

  39. Gould, G. W., & Holman, G.D. (1993): The glucose transporter family: structure, function and tissue-specific expression.Biochem. J.,295, 329–341.

    CAS  PubMed  Google Scholar 

  40. Gould, G.W., Thomas, H.M., Jess, T.J., & Bell, G. I. (1991): Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms.Biochemistry,30, 5139–5145.

    CAS  PubMed  Google Scholar 

  41. Gournas, C., Papageorgiou, I., & Diallinas, G. (2008): The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role.Mol Biosyst,4, 404–416.

    CAS  PubMed  Google Scholar 

  42. Gude, N.M., Stevenson, J.L., Rogers, S., Best, J.D., Kalionis, B., Huisman, M. A., Erwich, J.J., Timmer, A., & King, R. G. (2003): GLUT12 expression in human placenta in first trimester and term.Placenta,24, 566–570.

    CAS  PubMed  Google Scholar 

  43. Ha, M.N., Graham, F.L., D’Souza, C.K., Muller, W.J., Igdoura, S.A., & Schellhorn, H.E. (2004): Functional rescue of vitamin C synthesis deficiency in human cells using adenoviral-based expression of murine l-gulono-gamma-lactone oxidase.Genomics,83, 482–492.

    CAS  PubMed  Google Scholar 

  44. Hacker, H.J., Thorens, B., & Grobholz, R. (1991): Expression of facilitative glucose transporter in rat liver and choroid plexus. A histochemical study in native cryostat sections.Histochemistry,96, 435–439.

    CAS  PubMed  Google Scholar 

  45. Hashiramoto, M., Kadowaki, T., Clark, A.E., Muraoka, A., Momomura, K., Sakura, H., Tobe, K., Akanuma, Y., Yazaki, Y., Holman, G.D., &et al. (1992). Site-directed mutagenesis of GLUT1 in helix 7 residue 282 results in perturbation of exofacial ligand binding.J Biol Chem,267, 17502–17507.

    CAS  PubMed  Google Scholar 

  46. Heimberg, H., De Vos, A., Pipeleers, D., Thorens, B., & Schuit, F. (1995): Differences in glucose transporter gene expression between rat pancreatic alpha-and beta-cells are correlated to differences in glucose transport but not in glucose utilization.J Biol Chem,270, 8971–8975.

    CAS  PubMed  Google Scholar 

  47. Helliwell, P.A., Richardson, M., Affleck, J., & Kellett, G. L. (2000): Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C.Biochem J,350 Pt 1, 149–154.

    CAS  PubMed  Google Scholar 

  48. Hirai, T., & Subramaniam, S. (2004): Structure and transport mechanism of the bacterial oxalate transporter OxlT.Biophys J,87, 3600–3607.

    CAS  PubMed  Google Scholar 

  49. Hoenack, C., & Roesen, P. (1996): Inhibition of angiotensin type 1 receptor prevents decline of glucose transporter (GLUT4) in diabetic rat heart.Diabetes,45 Suppl 1, S82–87.

    PubMed  Google Scholar 

  50. Hogue, D.L., & Ling, V. (1999): A human nucleobase transporter-like cDNA (SLC23A1): member of a transporter family conserved from bacteria to mammals.Genomics,59, 18–23.

    CAS  PubMed  Google Scholar 

  51. Horio, F., Ozaki, K., Yoshida, A., Makino, S., & Hayashi, Y. (1985): Requirement for ascorbic acid in a rat mutant unable to synthesize ascorbic acid.J Nutr,115, 1630–1640.

    CAS  PubMed  Google Scholar 

  52. Hosokawa, M., & Thorens, B. (2002): Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway.Am J Physiol Endocrinol Metab,282, E794–801.

    CAS  PubMed  Google Scholar 

  53. Hruz, P.W., & Mueckler, M.M. (2001): Structural analysis of the GLUT1 facilitative glucose transporter (review).Mol Membr Biol,18, 183–193.

    CAS  PubMed  Google Scholar 

  54. Huang, S., & Czech, M.P. (2007): The GLUT4 glucose transporter.Cell Metab,5, 237–252.

    CAS  PubMed  Google Scholar 

  55. Huang, Y., Lemieux, M.J., Song, J., Auer, M., & Wang, D. N. (2003): Structure and mechanism of the glycerol-3-phosphate transporter fromEscherichia coli.Science,301, 616–620.

    CAS  PubMed  Google Scholar 

  56. Ibberson, M., Uldry, M., & Thorens, B. (2000): GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues.J Biol Chem,275, 4607–4612.

    CAS  PubMed  Google Scholar 

  57. Iserovich, P., Wang, D., Ma, L., Yang, H., Zuniga, G. A., Pascual, J.M., Kuang, K., De Vivo, D.C., & Fischbarg, J. (2002): Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer.J Biol Chem,277, 30991–30997.

    CAS  PubMed  Google Scholar 

  58. Joost, H.G., Bell, G. I., Best, J.D., Birnbaum, M.J., Charron, M.J., Chen, Y.T., Doege, H., James, D.E., Lodish, H.F., Moley, K.H., Moley, J.F., Mueckler, M., Rogers, S., Schurmann, A., Seino, S., & Thorens, B. (2002): Nomeclature of the GLUT/SLC2A family of sugar/polyol transport facilitators.Am J Physiol Endocrinol Metab,282, E974–976.

    CAS  PubMed  Google Scholar 

  59. Jung, H. (2002): The sodium/substrate symporter family: structural and functional features.FEBS Lett,529, 73–77.

    CAS  PubMed  Google Scholar 

  60. Kang, J.S., Kim, H.N., Jung da, J., Kim, J.E., Mun, G.H., Kim, Y.S., Cho, D., Shin, D.H., Hwang, Y. I., & Lee, W. J. (2007): Regulation of UVB-induced IL-8 and MCP-1 production in skin keratinocytes by increasing vitamin C uptake via the redistribution of SVCT-1 from the cytosol to the membrane.J Invest Dermatol,127, 698–706.

    CAS  PubMed  Google Scholar 

  61. Kasahara, T., & Kasahara, M. (1996): Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae.Biochem J,315, 177–182.

    CAS  PubMed  Google Scholar 

  62. Ke, S., Carcamo, J.M., & Golde, D.W. (2005): Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.Faseb J,19, 1657–1667.

    Google Scholar 

  63. Krupka, R.M., & Deves, R. (1986): Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes.Biochem Cell Biol,64, 1099–1107.

    CAS  PubMed  Google Scholar 

  64. Larance, M., Ramm, G., & James, D.E. (2008): The GLUT4 code.Mol Endocrinol,22, 226–233.

    CAS  PubMed  Google Scholar 

  65. Leary, L.D., Wang, D., Nordli, D.R., Jr., Engelstad, K., & De Vivo, D. C. (2003): Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome.Epilepsia,44, 701–707.

    PubMed  Google Scholar 

  66. Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R.W., Washko, P.W., Dhariwal, K.R., Park, J.B., Lazarev, A., Graumlich, J.F., King, J., & Cantilena, L. R. (1996): Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance.Proc Natl Acad Sci USA,93, 3704–3709.

    CAS  PubMed  Google Scholar 

  67. Levine, M., Rumsey, S. C., Daruwala, R., Park, J.B., & Wang, Y. (1999): Criteria and recommendations for vitamin C intake.Jama,281, 1415–1423.

    CAS  PubMed  Google Scholar 

  68. Levine, M., Wang, Y., Padayatty, S. J., & Morrow, J. (2001): A new recommended dietary allowance of vitamin C for healthy young women.Proc Natl Acad Sci USA,98, 9842–9846.

    CAS  PubMed  Google Scholar 

  69. Liang, W. J., Johnson, D., & Jarvis, S. M. (2001): Vitamin C transport systems of mammalian cells.Mol Membr Biol,18, 87–95.

    CAS  PubMed  Google Scholar 

  70. Liang, W.J., Johnson, D., Ma, L.S., Jarvis, S.M., & Wei-Jun, L. (2002): Regulation of the human vitamin C transporters expressed in COS-1 cells by protein kinase C.Am J Physiol Cell Physiol,283, C1696–1704.

    CAS  PubMed  Google Scholar 

  71. Linster, C.L., & Van Schaftingen, E. (2007): Vitamin C. Biosynthesis, recycling and degradation in mammals.Febs J,274, 1–22.

    CAS  PubMed  Google Scholar 

  72. Liu, Q., Vera, J.C., Peng, H., & Golde, D.W. (2001): The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity.Biochemistry,40, 7874–7881.

    CAS  PubMed  Google Scholar 

  73. Lutsenko, E.A., Carcamo, J. M., & Golde, D.W. (2004): A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport.Mol Cell Biol,24, 3150–3156.

    CAS  PubMed  Google Scholar 

  74. Macheda, M.L., Williams, E.D., Best, J.D., Wlodek, M.E., & Rogers, S. (2003): Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland:Cell Tissue Res,311, 91–97.

    CAS  PubMed  Google Scholar 

  75. Madar, Z., MacLusky, N.J., & Naftolin, F. (1982): Estrogen stimulation of 3-o-methyl-D-glucose uptake in isolated rat hepatocytes.Endocrinology,110, 330–335.

    CAS  PubMed  Google Scholar 

  76. Maeda, N., Hagihara, H., Nakata, Y., Hiller, S., Wilder, J., & Reddick, R. (2000): Aortic wall damage in mice unable to synthesize ascorbic acid.Proc Natl Acad Sci USA,97, 841–846.

    CAS  PubMed  Google Scholar 

  77. Manolescu, A., Salas-Burgos, A.M., Fischbarg, J., & Cheeseman, C.I. (2005): Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7).J Biol Chem,280, 42978–42983.

    CAS  PubMed  Google Scholar 

  78. Manolescu, A.R., Witkowska, K., Kinnaird, A., Cessford, T., & Cheeseman, C. (2007): Facilitated hexose transporters: new perspectives on form and function.Physiology (Bethesda),22, 234–240.

    CAS  Google Scholar 

  79. Martin, A., & Frei, B. (1997): Both intracellular and extracellular vitamin C inhibit atherogenic modification of LDL by human vascular endothelial cells.Arterioscler Thromb Vasc Biol,17, 1583–1590.

    CAS  PubMed  Google Scholar 

  80. Maulen, N.P., Henriquez, E.A., Kempe, S., Carcamo, J.G., Schmid-Kotsas, A., Bachem, M., Grunert, A., Bustamante, M.E., Nualart, F., & Vera, J.C. (2003): Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells.J Biol Chem,278, 9035–9041.

    CAS  PubMed  Google Scholar 

  81. May, J.M. (1989): Differential labeling of the erythrocyte hexose carrier by N-ethylmaleimide: correlation of transport inhibition with reactive carrier sulfhydryl groups.Biochim Biophys Acta,986, 207–216.

    CAS  PubMed  Google Scholar 

  82. May, J.M., Qu, Z.C., Whitesell, R. R., & Cobb, C. E. (1996): Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate.Free Radic Biol Med,20, 543–551.

    CAS  PubMed  Google Scholar 

  83. McVie-Wylie, A.J., Lamson, D.R., & Chen, Y.T. (2001): Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility.Genomics,72, 113–117.

    CAS  PubMed  Google Scholar 

  84. Mehlhorn, R.J. (1991): Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte.J Biol Chem,266, 2724–2731.

    CAS  PubMed  Google Scholar 

  85. Meintanis, C., Karagouni, A.D., & Diallinas, G. (2000): Amino acid residues N450 and Q449 are critical for the uptake capacity and specificity of UapA, a prototype of a nucleobase-ascorbate transporter family.Mol Membr Biol,17, 47–57.

    CAS  PubMed  Google Scholar 

  86. Meredith, D., & Price, R. A. (2006): Molecular modeling of PepT1—towards a structure.J Membr Biol,213, 79–88.

    CAS  PubMed  Google Scholar 

  87. Michels, A.J., Joisher, N., & Hagen, T.M. (2003): Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes.Arch Biochem Biophys,410, 112–120.

    CAS  PubMed  Google Scholar 

  88. Mizushima, Y., Harauchi, T., Yoshizaki, T., & Makino, S. (1984): A rat mutant unable to synthesize vitamin C.Experientia,40, 359–361.

    CAS  PubMed  Google Scholar 

  89. Montecinos, V., Guzman, P., Barra, V., Villagran, M., Munoz-Montesino, C., Sotomayor, K., Escobar, E., Godoy, A., Mardones, L., Sotomayor, P., Guzman, C., Vasquez, O., Gallardo, V., van Zundert, B., Bono, M.R., Onate, S.A., Bustamante, M., Carcamo, J.G., Rivas, C.I., & Vera, J.C. (2007): Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione.J Biol Chem,282, 15506–15515.

    CAS  PubMed  Google Scholar 

  90. Montel-Hagen, A., Kinet, S., Manel, N., Mongellaz, C., Prohaska, R., Battini, J.L., Delaunay, J., Sitbon, M., & Taylor, N. (2008): Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C.Cell,132, 1039–1048.

    CAS  PubMed  Google Scholar 

  91. Moreau, R. & Dabrowski, K. (1998): Fish acquired ascorbic acid synthesis prior to terrestrial vertebrate emergence.Free Radic Biol Med,25, 989–990.

    CAS  PubMed  Google Scholar 

  92. Mori, H., Hashiramoto, M., Clark, A.E., Yang, J., Muraoka, A., Tamori, Y., Kasuga, M., & Holman, G.D. (1994): Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation.J Biol Chem,269, 11578–11583.

    CAS  PubMed  Google Scholar 

  93. Moser, U. (1987): Uptake of ascorbic acid by leukocytes.Ann N Y Acad Sci,498, 200–215.

    CAS  PubMed  Google Scholar 

  94. Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., & Lodish, H.F. (1985): Sequence and structure of a human glucose transporter.Science,229, 941–945.

    CAS  PubMed  Google Scholar 

  95. Nishimura, H., Pallardo, F.V., Seidner, G.A., Vannucci, S., Simpson, I.A., & Birnbaum, M.J. (1993): Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes.J Biol Chem,268, 8514–8520.

    CAS  PubMed  Google Scholar 

  96. Nomura, M., Takahashi, T., Nagata, N., Tsutsumi, K., Kobayashi, S., Akiba, T., Yokogawa, K., Moritani, S., & Miyamoto, K. (2008): Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells.Biol Pharm Bull,31, 1403–1409.

    CAS  PubMed  Google Scholar 

  97. Nualart, F.J., Rivas, C.I., Montecinos, V.P., Godoy, A.S., Guaiquil, V.H., Golde, D.W., & Vera, J.C. (2003): Recycling of vitamin C by a bystander effect.J Biol Chem,278, 10128–10133.

    CAS  PubMed  Google Scholar 

  98. Nunes, G.L., Robinson, K., Kalynych, A., King, S.B., 3rd, Sgoutas, D.S., & Berk, B.C. (1997): Vitamins C and E inhibit O2-production in the pig coronary artery.Circulation,96, 3593–3601.

    CAS  PubMed  Google Scholar 

  99. Ogawa, A., Kurita, K., Ikezawa, Y., Igarashi, M., Kuzumaki, T., Daimon, M., Kato, T., Yamatani, K., & Sasaki, H. (1996): Functional localization of glucose transporter 2 in rat liver.J Histochem Cytochem,44, 1231–1236.

    CAS  PubMed  Google Scholar 

  100. Olson, A.L., & Knight, J.B. (2003): Regulation of GLUT4 expression in vivo and in vitro.Front Biosci,8, 401–409.

    Google Scholar 

  101. Olsowski, A., Monden, I., & Keller, K. (1998): Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter.Biochemistry,37, 10738–10745.

    CAS  PubMed  Google Scholar 

  102. Olsowski, A., Monden, I., Krause, G., & Keller, K. (2000): Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments.Biochemistry,39, 2469–2474.

    CAS  PubMed  Google Scholar 

  103. Pawagi, A.B., & Deber, C.M. (1990): Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein.Biochemistry,29, 950–955.

    CAS  PubMed  Google Scholar 

  104. Phay, J.E., Hussain, H.B., & Moley, J.F. (2000): Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9).Genomics,66, 217–220.

    CAS  PubMed  Google Scholar 

  105. Purhonen, P., Lundback, A.K., Lemonnier, R., Leblanc, G., & Hebert, H. (2005): Three-dimensional structure of the sugar symporter melibiose permease from cryo-electron microscopy.J Struct Biol,152, 76–83.

    CAS  PubMed  Google Scholar 

  106. Rampal, A.L., & Jung, C.Y. (1987): Substrate-induced conformational change of human erythrocyte glucose transporter: inactivation by alkylating reagents.Biochim Biophys Acta,896, 287–294.

    CAS  PubMed  Google Scholar 

  107. Reidling, J.C., Subramanian, V.S., Dahhan, T., Sadat, M., & Said, H.M. (2008): Mechanisms and regulation of vitamin C uptake: studies of the hSVCT systems in human liver epithelial cells.Am J Physiol Gastrointest Liver Physiol,295, G1217–1227.

    CAS  PubMed  Google Scholar 

  108. Rogers, S., Chandler, J.D., Clarke, A.L., Petrou, S., & Best, J.D. (2003): Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes.Biochem Biophys Res Commun,308, 422–426.

    CAS  PubMed  Google Scholar 

  109. Rogers, S., Macheda, M.L., Docherty, S.E., Carty, M.D., Henderson, M.A., Soeller, W.C., Gibbs, E.M., James, D.E., & Best, J.D. (2002): Identification of a novel glucose transporter-like protein-GLUT-12.Am J Physiol Endocrinol Metab,282, E733–738.

    CAS  PubMed  Google Scholar 

  110. Rose, R.C., Choi, J.L., & Koch, M.J. (1988): Intestinal transport and metabolism of oxidized ascorbic acid (dehydroascorbic acid).Am J Physiol,254, G824–828.

    CAS  PubMed  Google Scholar 

  111. Rumsey, S.C., Daruwala, R., Al-Hasani, H., Zarnowski, M.J., Simpson, I.A., & Levine, M. (2000): Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes.J Biol Chem,275, 28246–28253.

    CAS  PubMed  Google Scholar 

  112. Rumsey, S.C., Kwon, O., Xu, G.W., Burant, C.F., Simpson, I., & Levine, M. (1997): Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid.J Biol Chem,272, 18982–18989.

    CAS  PubMed  Google Scholar 

  113. Saier, M.H., Jr., Beatty, J.T., Goffeau, A., Harley, K.T., Heijne, W.H., Huang, S.C., Jack, D.L., Jahn, P.S., Lew, K., Liu, J., Pao, S.S., Paulsen, I.T., Tseng, T.T., & Virk, P.S. (1999): The major facilitator superfamily.J Mol Microbiol Biotechnol,1, 257–279.

    CAS  PubMed  Google Scholar 

  114. Sakamoto, O., Ogawa, E., Ohura, T., Igarashi, Y., Matsubara, Y., Narisawa, K., & Iinuma, K. (2000): Mutation analysis of the GLUT2 gene in patients with Fanconi-Bickel syndrome.Pediatr Res,48, 586–589.

    CAS  PubMed  Google Scholar 

  115. Salas-Burgos, A., Iserovich, P., Zuniga, F., Vera, J.C., & Fischbarg, J. (2004): Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules.Biophys J,87, 2990–2999.

    CAS  PubMed  Google Scholar 

  116. Santer, R., Schneppenheim, R., Dombrowski, A., Gotze, H., Steinmann, B., & Schaub, J. (1997): Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome.Nat Genet,17, 324–326.

    CAS  PubMed  Google Scholar 

  117. Sapper, H., Kang, S.O., Paul, H.H., & Lohmann, W. (1982): The reversibility of the vitamin C redox system: electrochemical reasons and biological aspects.Z Naturforsch [C],37, 942–946.

    CAS  Google Scholar 

  118. Savini, I., Catani, M.V., Duranti, G., Ceci, R., Sabatini, S., & Avigliano, L. (2005): Vitamin C homeostasis in skeletal muscle cells.Free Radic Biol Med,38, 898–907.

    CAS  PubMed  Google Scholar 

  119. Savini, I., Rossi, A., Pierro, C., Avigliano, L., & Catani, M.V. (2008): SVCT1 and SVCT2: key proteins for vitamin C uptake.Amino Acids,34, 347–355.

    CAS  PubMed  Google Scholar 

  120. Schorah, C.J. (1992): The transport of vitamin C and effects of disease.Proc Nutr Soc,51, 189–198.

    CAS  PubMed  Google Scholar 

  121. Schurmann, A., Doege, H., Ohnimus, H.., Monser, V., Buchs, A., & Joost, H.G. (1997): Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function.Biochemistry,36, 12897–12902.

    CAS  PubMed  Google Scholar 

  122. Sergeant, S., & Kim, H.D. (1985): Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin.J Biol Chem,260, 14677–14682.

    CAS  PubMed  Google Scholar 

  123. Sigal, N., Vardy, E., Molshanski-Mor, S., Eitan, A., Pilpel, Y., Schuldiner, S., & Bibi, E. (2005): 3D model of the Escherichia coli multidrug transporter MdfA reveals an essential membrane-embedded positive charge.Biochemistry,44, 14870–14880.

    CAS  PubMed  Google Scholar 

  124. Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., & Vannucci, S.J. (2008): The facilitative glucose transporter GLUT3: 20 years of distinction.Am J Physiol Endocrinol Metab,295, E242–253.

    CAS  PubMed  Google Scholar 

  125. Song, J., Kwon, O., Chen, S., Daruwala, R., Eck, P., Park, J.B., & Levine, M. (2002): Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose.J Biol Chem,277, 15252–15260.

    CAS  PubMed  Google Scholar 

  126. Song, X.M., Hresko, R.C., Mueckler, M. (2008): Identification of amino acid residues within the C terminus of the Glut4 glucose transporter that are essential for insulin-stimulated redistribution to the plasma membrane.J Biol Chem,283, 12571–12585.

    CAS  PubMed  Google Scholar 

  127. Sotiriou, S., Gispert, S., Cheng, J., Wang, Y., Chen, A., Hoogstraten-Miller, S., Miller, G.F., Kwon, O., Levine, M., Guttentag, S.H., & Nussbaum, R.L. (2002): Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival.Nat Med,8, 514–517.

    CAS  PubMed  Google Scholar 

  128. Stratakis, C.A., Taymans, S.E., Daruwala, R., Song, J., & Levine, M. (2000): Mapping of the human genes (SLC23A2 and SLC23A1) coding for vitamin C transporters 1 and 2 (SVCT1 and SVCT2) to 5q23 and 20p12, respectively.J Med Genet,37, E20.

    PubMed  CAS  Google Scholar 

  129. Subramanian, V.S., Marchant, J.S., Boulware, M.J., & Said, H.M. (2004): A C-terminal region dictates the apical plasma membrane targeting of the human sodium-dependent vitamin C transporter-1 in polarized epithelia.J Biol Chem,279, 27719–27728.

    CAS  PubMed  Google Scholar 

  130. Subramanian, V.S., Marchant, J.S., Reidling, J.C., & Said, H.M. (2008): N-Glycosylation is required for Na+-depent vitamin C transporter functionality.Biochem Biophys Res Commun,374, 123–127.

    CAS  PubMed  Google Scholar 

  131. Takanaga, H., Mackenzie, B., & Hediger, M.A. (2004): Sodium-dependent ascorbic acid transporter family SLC23.Pflugers Arch,447, 677–682.

    CAS  PubMed  Google Scholar 

  132. Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., & Hirano, H. (1992): Localization of erythrocyte/HepG2-type glucose transporter (GLUT1) in human placental villi.Cell Tissue Res,267, 407–412.

    CAS  PubMed  Google Scholar 

  133. Thorens, B. (1992): Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter.Int Rev Cytol,137, 209–238.

    CAS  PubMed  Google Scholar 

  134. Thorens, B., Sarkar, H.K., Kaback, H.R. & Lodish, H.F. (1988): Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells.Cell,55, 281–290.

    CAS  PubMed  Google Scholar 

  135. Ting, H.H., Timimi, F.K., Haley, E.A., Roddy, M.A., Ganz, P., & Creager, M.A. (1997): Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia.Circulation,95, 2617–2622.

    CAS  PubMed  Google Scholar 

  136. Tsukaguchi, H., Tokui, T., Mackenzie, B., Berger, U.V., Chen, X.Z., Wang, Y., Brubaker, R.F., & Heliger, M.A. (1999): A family of mammalian Na+-dependent L-ascorbic acid transporters.Nature,399, 70–75.

    CAS  PubMed  Google Scholar 

  137. Uldry, M., Ibberson, M., Hosokawa, M., & Thorens, B. (2002): GLUT2 is a high affinity glucosamine transporter.FEBS Lett,524, 199–203.

    CAS  PubMed  Google Scholar 

  138. Uldry, M., & Thorens, B. (2004): The SLC2 family of facilitated hexose and polyol transporters.Pflugers Arch,447, 480–489.

    CAS  PubMed  Google Scholar 

  139. Varma, S., Campbell, C.E., & Kuo, S.M. (2008): Functional role of consereed transmembrane segment 1 residues in human sodium-dependent vitamin C transporters.Biochemistry,47, 2952–2960.

    CAS  PubMed  Google Scholar 

  140. Vera, J.C., Reyes, A.M., Velasquez, F.V., Rivas, C.I., Zhang, R.H., Strobel, P., Slebe, J.C., Nunez-Alarcon, J., & Golde, D.W. (2001): Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors.Biochemistry,40, 777–790.

    CAS  PubMed  Google Scholar 

  141. Vera, J.C., Rivas, C.I., Fischbarg, J., & Golde, D.W. (1993): Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid.Nature,364, 79–82.

    CAS  PubMed  Google Scholar 

  142. Vera, J.C., Rivas, C.I., Velasquez, F.V., Zhang, R.H., Concha, II, & Golde, D.W. (1995): Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid.J Biol Chem,270, 23706–23712.

    CAS  PubMed  Google Scholar 

  143. Wallberg-Henriksson, H., & Zierath, J.R. (2001): GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review).Mol Membr Biol,18, 205–211.

    CAS  PubMed  Google Scholar 

  144. Wang, H., Dutta, B., Huang, W., Devoe, L.D., Leibach, F.H., Ganapathy, V., & Prasad, P.D. (1999): Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant.Biochim Biophys Acta,1461, 1–9.

    CAS  PubMed  Google Scholar 

  145. Wang, Y., Mackenzie, B., Tsukaguchi, H., Weremowicz, S., Morton, C.C., & Hediger, M.A. (2000): Human vitamin C (L-ascorbic acid) transporter SVCT1.Biochem Biophys Res Commun,267, 488–494.

    CAS  PubMed  Google Scholar 

  146. Wang, Y., Russo, T.A., Kwon, O., Chanock, S., Rumsey, S.C., & Levine, M. (1997): Ascorbate recycling in human neutrophils: induction by bacteria.Proc Natl Acad Sci USA,94, 13816–13819.

    CAS  PubMed  Google Scholar 

  147. Wilson, J.X. (2005): Regulation of vitamin C transport.Annu Rev Nutr. 25, 105–125.

    CAS  PubMed  Google Scholar 

  148. Winkler, B.S. (1987): In vitro oxidation of ascorbic acid and its prevention by GSH.Biochim Biophys Acta,925, 258–264.

    CAS  PubMed  Google Scholar 

  149. Wood, J.M., Culham, D.E., Hillar, A., Vernikovska, Y.I., Liu, F., Boggs, J.M., & Keates, R.A. (2005): A structural model for the osmosensor, transporter; and osmoregulator ProP of Escherichia coli.Biochemistry,44, 5634–5646.

    CAS  PubMed  Google Scholar 

  150. Wu, X., & Freeze, H.H. (2002): GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms.Genomics,80, 553–557.

    CAS  PubMed  Google Scholar 

  151. Wu, X., Itoh, N., Taniguchi, T., Hirano, J., Nakanishi, T., & Tanaka, K. (2004): Stimulation of differentiation in sodium-dependent vitamin C transporter 2 overexpressing MC3T3-E1 osteoblatts.Biochem Biophys Res Commun,317, 1159–1164.

    CAS  PubMed  Google Scholar 

  152. Wu, X., Itoh, N., Taniguchi, T., Nakanishi, T., Tatsu, Y., Yumoto, N., & Tanaka, K. (2003): Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differentiation.Arch Biochem Biophys,420, 114–120.

    CAS  PubMed  Google Scholar 

  153. Wu, X., Li, W., Sharma, V., Godzik, A., & Freeze, H.H. (2002): Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues.Mol Genet Metab,76, 37–45.

    CAS  PubMed  Google Scholar 

  154. Zamora-Leon, S.P., Golde, D.W., Concha, II, Rivas, C.I., Delgado-López, F., Baselga, J., Nualart, F., & Vera, J.C. (1996): Expression of the fructose transporter GLUT5 in human breast cancer.Proc Natl Acad Sci USA,93, 1847–1852.

    CAS  PubMed  Google Scholar 

  155. Zannoni, V., Lynch, M., Goldstein, S., & Sato, P. (1974): A rapid micromethod for the determination of ascorbic acid in plasma and tissues.Biochem Med,11, 41–48.

    CAS  PubMed  Google Scholar 

  156. Zhao, F.Q. & Keating, A.F. (2007): Functional properties and genomics of glucose transporters.Curr Genomics,8, 113–128.

    CAS  PubMed  Google Scholar 

  157. Zuniga, F.A., Shi, G., Haller, J.F., Rubashkin, A., Flynn, D.R., Iserovich, P., & Fischbarg, J. (2001): A three-dimensional model of the human facilitative glucose transporter Glut1.J Biol Chem,276, 44970–44975.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. I. Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas, C.I., Zúñiga, F.A., Salas-Burgos, A. et al. Vitamin C transporters. J Physiol Biochem 64, 357–375 (2008). https://doi.org/10.1007/BF03174092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03174092

Key words

Navigation