Skip to main content
Log in

Technical developments in radiology in Australasia dating from 1977

  • Invited Article
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This article outlines the enormous technological advances that have taken place in the practice of radiology in Australasia in the 30 years since approximately 1977. These developments have led to significant improvements in image quality across all modalities, including even general radiography, which had as its genesis Roentgen’s ground-breaking discovery of X-rays in 1895. However, nowhere has the development been more dramatic than in magnetic resonance imaging (MRI). This may be brought into stark reality by noting that the first MRI image of a human finger was produced in 1976 followed one year later by that of a human chest and the first MRI units were not installed in Australia and New Zealand until 1986 and 1991, respectively. The quality of these early images would be judged as laughable by today’s standards where the impressive isotropic imaging that can be achieved at sub-millimetre level by both MRI and CT could not have been dreamed of 30 years ago. The review also highlights some challenges for the future of the medical physics profession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Special 50th Anniversary Issue of Physics in Medicine and Biology, Phys. Med. Biol., 51 (13): 2006.

  2. Heggie, J.C.P.,A survey of doses to patients in a large public hospital resulting from common plain film radiographic procedures, Austral. Phys. Eng. Sci. Med., 13: 71–80, 1990.

    CAS  Google Scholar 

  3. Hart, D., Hillier, M.C. and Wall, B.F.,Doses to patients from medical x-ray examinations in the UK-2000 Review, National Radiological Protection Board, Didcot, NRPB-W14, 2002.

  4. Sonoda, M., Takano, M., Miyohara, J. and Kato, H.,Computed Radiography utilizing scanning laser stimulated luminescence, Radiol., 148: 833–838, 1983.

    CAS  Google Scholar 

  5. Heggie, J.C.P. and Wilkinson, L.E.,Radiation doses from common radiographic procedures: A ten year perspective, Austral. Phys. Eng. Sci. Med., 23: 124–133, 2000.

    CAS  Google Scholar 

  6. Pratt, H.M., Langlotz, C.P., Feingold, E.R. et al.,Incremental cost of department-wide implementation of a picture archiving and communication system and Computed Radiography, Radiol., 206: 245–252, 1998.

    CAS  Google Scholar 

  7. Becker, S.H. and Arenson, R.L.,Costs and benefits of picture archiving and communication systems, J. Am. Med. Inform. Assoc., 1: 361–371, 1994.

    CAS  PubMed  Google Scholar 

  8. Heggie, J.C.P., Liddell, N.A. and Maher, K.P.,Applied Imaging Technology, 4th Edition, St Vincent’s Hospital Melbourne, 2001: 232–240.

    Google Scholar 

  9. Crummy, A.B., Strother, C.M., Sackett, J.F. et al,Computerized fluoroscopy: Digital subtraction for intravenous angiocardiography and arteriography, AJR, 135: 1131–1140, 1980.

    CAS  PubMed  Google Scholar 

  10. Mistretta, C.A., Kruger, R.A., Ergun, D.L. et al,Digital vascular imaging, Medicamundi, 26: 1–10, 1980.

    Google Scholar 

  11. Mistretta, C.A., Crummy, A.B. and Strother, C.M.,Digital angiography: A perspective, Radiol., 139: 273–276, 1981.

    CAS  Google Scholar 

  12. Verhoeven, L.,Digital Cardiac Imaging, Medicamundi, 32: 111–116, 1987.

    Google Scholar 

  13. Behling, R.,The MRC 200: A new high output X-ray tube, Medicamundi, 35: 57–64, 1990.

    Google Scholar 

  14. Homberg, R. and Koppel, R.,An X-ray tube assembly with rotating anode spiral groove bearing of the 2nd generation, Electromedica, 66: 65–66, 1997.

    Google Scholar 

  15. Gruentzig, A.R.,Percutaneous transluminal coronary angioplasty, Semin. Roentgen., 16: 152–153, 1981.

    Article  CAS  Google Scholar 

  16. Gruentzig, A.R. and Meier, B.,Percutaneous transluminal coronary angioplasty. The first five years and the future, Int. J. Cardiol., 2: 319–323, 1983.

    Article  CAS  PubMed  Google Scholar 

  17. Senes, S. and Davies, J.,Coronary angioplasty in Australia 1996. Australian Institute of Health Cat. No. CVD 9. Canberra, 1999.

  18. Standards Australia and Standards New Zealand,Medical electrical equipment-Particular requirements for safety-X-ray equipment for interventional procedures, AS/NZS 3200.2.43, 2002.

  19. Kalendar, W.A., Seissler, W. and Vock, P.,Singlebreathhold spiral volumetric CT by continuous patient translation and scanner rotation, Radiol., 173: 414, 1989.

    Google Scholar 

  20. Kalendar, W.A., Seissler, W, Klotz, E. and Vock, P.,Spiral volumetric CT with single breathhold technique, continuous transport, and continuous scanner rotation, Radiol., 176: 181–183, 1990.

    Google Scholar 

  21. Flohr, T., Stierstorfer, K., Bruder, H., et al,Image reconstruction and image quality evaluation for a 16-slice CT scanner, Med. Phys., 30: 832–45, 2003.

    Article  PubMed  Google Scholar 

  22. Flohr, T.G., Stierstorfer, K., Ulzheimer, S. et al,Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot, Med. Phys., 32: 2536–2547, 2005

    Article  CAS  PubMed  Google Scholar 

  23. Lewis, M., Keat, N., and Edyvean, S.,32 to 64 slice CT scanner comparison report version 14, NHS report 0613, February 2006

  24. Schardt, P., Deuringer, J., Freudenberger, J. et al,New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology, Med. Phys., 31: 2699–2706, 2004.

    Article  PubMed  Google Scholar 

  25. Mansfield, P. and Maudsley, A.A.,Line scan proton spin imaging in biological structures by NMR, Phys. Med. Biol., 21: 847–852, 1976

    Article  CAS  PubMed  Google Scholar 

  26. Damadian, R., Goldsmith, M. and Minkoff, L.,NMR in cancer: XVI. Fonar image of the live human body, Physiol. Chem. Phys., 9: 97–100, 1977.

    CAS  PubMed  Google Scholar 

  27. Braun, M. and McCarthy, A.L.,NMR images in substantially non-uniform fields, Austral. Radiol. 29: 67–70, 1985.

    Article  CAS  Google Scholar 

  28. Wedeen, W., Meuli, R., Edeleman, R. et al, Projectiveimaging of pulsatile flow with magnetic resonance, Science, 230: 946–948, 1985.

    Article  CAS  PubMed  Google Scholar 

  29. Dumoulin, C.L., Souza, S.P. and Feng, H.,Multiecho magnetic resonance angiography, Magn. Reson. Med., 5, 47–57, 1987.

    Article  CAS  PubMed  Google Scholar 

  30. Dumoulin, C.L., Souza, S.P. and Hart, H.R.,Rapid scan magnetic resonance angiography, Magn. Reson. Med., 5: 238–245, 1987.

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa, S., Lee, T.-M., Nayak, A. S. and Glynn, P.,Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields, Magn. Reson. Med., 14: 68–78, 1990.

    Article  CAS  PubMed  Google Scholar 

  32. Ogawa, S., Lee, T.M., Kay, A.R. and Tank, D.W.,Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci., 87: 9868–9872, 1990.

    Article  CAS  PubMed  Google Scholar 

  33. Belliveau, J.W., Cohen, M.S., Weisskoff, R.M. et al,Functional studies of the human brain using high-speed magnetic resonance imaging, J. Neuroimaging, 1: 36–41, 1991.

    CAS  PubMed  Google Scholar 

  34. Rosen, B.R., Belliveau, J.W., Aronen, H.J. et al,Susceptibility contrast imaging of cerebral blood volume: human experience, Magn. Reson. Med., 22: 293–299, 1991.

    Article  CAS  PubMed  Google Scholar 

  35. Belliveau, J.W., Kennedy, D.N. Jr., McKinstry, R.C. et al,Functional mapping of the human visual cortex by magnetic resonance imaging, Science, 254: 716–719, 1991.

    Article  CAS  PubMed  Google Scholar 

  36. Leach, M.O.,Review: Magnetic resonance spectroscopy (MRS) in the investigation of cancer in the Royal Marsden Hospital and the Institute of Cancer research, Phys. Med. Biol., 51: R61-R82, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Conway, B.J., McCrohan, J.L., Rueter, F.G. and Suleiman, O.H.,Mammography in the eighties, Radiol., 177: 335–339, 1990.

    CAS  Google Scholar 

  38. Feig S.A.,Decreased breast cancer mortality through mammographic screening: results of clinical trials, Radiol., 167: 659–665, 1988.

    CAS  Google Scholar 

  39. Wald, N.J., Chamberlain, J. and Hackshaw, A.,European Society of Mastology Consensus Conference on breast cancer screening: report of the evaluation committee, Br. J. Radiol.. 67: 925–933, 1994.

    Article  CAS  PubMed  Google Scholar 

  40. Shen, Y., Yang, Y., Inoue, L.Y. et al,Role of detection method in predicting breast cancer survival; analysis of randomized screening trials, J. Nat. Canc. Inst. 97: 1195–1203 2005.

    Article  Google Scholar 

  41. Pisano, E.D., Gatsonis, C., Hendrick, E, et al,Diagnostic performance of digital versus film mammography for breastcancer screening, New Eng. J. Med., 353: 1773–1783, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Aslund, M., Cederstrom, B., Lundqvist, M. and Danielsson, M.,AEC for scanning digital mammography based on variation of scan velocity, Med. Phys., 32: 3367–3374, 2005.

    Article  PubMed  Google Scholar 

  43. Aslund, M., Cederstrom, B., Lundqvist, M. and Danielsson, M.,Scatter rejection in multislit digital mammography, Med. Phys., 33: 933–940, 2006.

    Article  PubMed  Google Scholar 

  44. Carpenter, D., Kossoff, G., Garrett, W.J. et al,The UI Octoson-a new class of ultrasonic echoscope, Austral. Radiol., 21: 85–89, 1977.

    Article  CAS  Google Scholar 

  45. Wells, P.N.T,Review: Ultrasound imaging, Phys. Med. Biol., 51: R83-R98, 2006.

    Article  CAS  PubMed  Google Scholar 

  46. Australian Radiation Protection and Nuclear Safety Agency,Code of practice in the medical applications of ionizing radiation, ARPANSA RPSxx, 200x.

  47. International Commission on Radiological Protection,Radiological protection and safety in medicine, ICRP Publication 73, Annals of the ICRP, 26 (2): 1996.

  48. National Radiological Protection Board,Guidelines on patient dose to promote the optimisation of protection for diagnostic medical exposures, Documents of the NRPB, 10 (1): 1999.

  49. Workman, A. and Cowen, A.R.,Exposure monitoring in photostimulable phosphor computed radiography, Rad. Prot. Dosim., 43: 135–138, 1992.

    CAS  Google Scholar 

  50. International Commission on Radiological Protection,Managing patient dose in digital radiography, ICRP Publication 93, Annals of the ICRP, 34 (1): 2004.

  51. Heggie, J.C.P., Patientdoses in multi-slice CT and the importance of optimisation, Austral. Phys. Eng. Sci. Med., 28: 86–96, 2005.

    Article  CAS  Google Scholar 

  52. Heggie, J.C.P., Kay, J.K. and Lee, W.K.,Importance in optimization of multi-slice computed tomography scan protocols, Austral. Radiol., 50: 278–285, 2006.

    Article  CAS  Google Scholar 

  53. Nagel, H.D. (ed)Radiation exposure in computed tomography: fundamentals, influencing parameters, dose assessment, optimisation, scanner data terminology, CTB Publications, Hamburg, 2002.

    Google Scholar 

  54. Kalra, M.K., Maher, M.M., Toth, T.L. et al,Strategies for CT radiation dose optimization, Radiol., 230: 619–628, 2004.

    Article  Google Scholar 

  55. International Commission on Radiological Protection,Educational Power Point Template on Managing Patient Dose in Computed Tomography, 2001 Available on the ICRP web site at http://www.icrp.org/educational_area.asp.

  56. International Commission on Radiological Protection,Managing patient dose in computed tomography, ICRP Publication 87, Annals of the ICRP, 30 (4): 2000.

  57. US Food and Drug Administration, FDA Public Health Advisory:Avoidance of serious x-ray-induced skin injuries to patients during fluoroscopically-guided procedures, September 30, 1994.

  58. Vano, E., Arranz, L., Sastre, J.M. et al,Dosimetric and radiation protection considerations based on some cases of patient skin injuries in interventional cardiology, Brit. J. Radiol., 71: 510–516, 1998.

    CAS  PubMed  Google Scholar 

  59. Koenig, T.R., Wolff, D., Mettler, F.A. and Wagner, L.K.,Skin injuries from fluoroscopically guided procedures: Part 1, Characteristics of radiation injury, AJR, 177: 3–12, 2001.

    CAS  PubMed  Google Scholar 

  60. Koenig, T.R, Mettler, F.A., and Wagner, L.K.,Skin injuries from fluoroscopically guided procedures: Part 2, Review of 73 cases and recommendations for minimizing dose delivered to patient, AJR, 177: 13–20, 2001.

    CAS  PubMed  Google Scholar 

  61. Vano, E., Gonzalez, L., Beneytez, F. and Moreno, F.,Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories, Brit. J. Radiol., 71: 728–733, 1998.

    CAS  PubMed  Google Scholar 

  62. Haskal, Z.J. and Worgul, B.V.,Interventional Radiology Carries Occupational Risk for Cataracts, RSNA News, 14: 5–6, 2004.

  63. Poletti, J.L.,Radiation injury to skin following a cardiac interventional procedure, Austral. Radiol., 41: 82–83, 1997.

    Article  CAS  Google Scholar 

  64. International Commission on Radiological Protection,Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85, Annals of the ICRP, 30 (2): 2000.

  65. Round, W.H.A survey of the Australasian clinical medical physics and biomedical engineering workforce, Austral. Phys. Eng. Sci. Med., 30: 13–24, 2007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. P. Heggie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heggie, J.C.P. Technical developments in radiology in Australasia dating from 1977. Australas. Phys. Eng. Sci. Med. 30, 160–177 (2007). https://doi.org/10.1007/BF03178423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178423

Key words

Navigation