Skip to main content
Log in

Stereotactic radiosurgery planning with ictal SPECT images

  • Technical Reports
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This paper is motivated by a clinical requirement to utilise ictal SPECT images for target localisation in stereotactic radiosurgery treatment planning using the xknife system which only supports CT and MRI images. To achieve this, the SPECT images were converted from raw (pixel data only) format into a part 10 compliant DICOM CT fileset. The minimum requirements for the recasting of a raw format image as DICOM CT or MRI data set are described in detail. The method can be applied to the importation of raw format images into any radiotherapy treatment planning system that supports CT or MRI import. It is demonstrated that the combination of the low spatial resolution SPECT images, depicting functional information, with high spatial resolution MRI images, which show the structural information, is suitable for stereotactic radiosurgery treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Newton, M. R., Austin, C. A., Chan, J. G., McKay, W. J., Rowe, R. C. and Berkovic, F. B.,Ictal SPECT Using Technetium-99m-HMPAO: Methods for Rapid Preparation and Optimal Deployment of Tracer During Spontaneous Seizures, The Journal of Nuclear Medicine 34(4):666–670, 1993.

    CAS  Google Scholar 

  2. O’Brien, T. J., O’Connor, M. K., Mullan, B. P., Brinkmann, B. H., Hanson, D., Jack, C. R. and So, E. L.,Subtraction ictal SPET co-registered to MRI in partial epilepsy: description and technical validation of the method with phantom and patient studies, Nucl. Med. Commun. 19:31–45, 1998.

    Article  PubMed  Google Scholar 

  3. Digital Imaging and Communications in Medicine (DICOM) 2003, published by National Electrical Manufacturers Association 1300 N. 17th Street Rosslyn, Virginia 22209, USA.

  4. Xknife RT2 Scanning Manual, (for software version 2.1) July 2003 Radionics 22 Terry Avenue Burlington MA 01803 USA.

  5. R. Smith private communication 4/4/2003.

  6. OSIRIS, Version 3.6 Medical Imaging Software University Hospital of Geneva www.expasy.ch/UIN.

  7. DICOM 3.10-2003Media Storage and File Format for Media Interchange, 3.8 DICOM MEDIA STORAGE AND FILE FORMAT DEFINITIONS p 10.

  8. Heilbrun, M. P., Roberts, T. S., Apuzzo, M. L., Wells, T. H. Jr., and Sabshin, J. K.Preliminary experience with Brown-Robert-Wells (BRW) computerized tomography stereotactic guidance system, Journal of Neurosurgery 59(2):217–222, 1983.

    Article  CAS  PubMed  Google Scholar 

  9. Hill D. L. G, Hawkes D J, Crossman, J. E., et al:Registration of MR and CT images for skull base surgery using point-like anatomical features, Brit J. Radiol 64:1030–1035, 1991.

    Article  CAS  PubMed  Google Scholar 

  10. Papavasileiou, P, Flux, G. D, Flower, M. A et al:An automated technique for SPECT marker-based image registration in radionuclide therapy, Phys Med Biol 46:2085–2097, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. DICOM 3.6-2003Data Dictionary, Table A1 UID values p81

  12. www.medicalconnections.co.uk.

  13. Ackerly, T., Andrews, J., Ball, D., Binns, D., D’Costa, I., Hicks, R. J., Kenny, M., Lau, E., MacManus, M., and Song, G.Display of positron emission tomography with Cadplan, Figures 4, 5, and 6 Australasian Physical and Engineering Sciences in Medicine 25(2):69–70, 2002.

    Google Scholar 

  14. Kernighan, B. W., and Ritchie, D. M,The C programming language, 2nd edition Chapter 1: A Tutorial Introduction Section 1.7 Functions: A note of history p26. Prentice Hall, Englewood Cliffs, New Jersey, 1998.

    Google Scholar 

  15. Holdstock, J.S, Mayes, A. R., Isaac, C. L., Gong, Q., and Roberts, N.,Differential involvement of the hippocampus and temporal lobe cortices in rapid and slow learning of new semantic information, Fig 1 caption p756 Neuropsychologia 40(7):748–768, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Robert I., Block, R. I., O’Leary, D. S., Hichiwa, R. D., Augustinack, J. C., Ponto, L. L. B., Ghoneim, M. M., Arndt, S., Hurtig, R. R., Watkins, G. L., Hall, J., et. al.Effects of frequent marijuana use on memory-related regional cerebral blood flow, Pharmacology Biochemistry and Behaviour, 72(1–2):237–250, 2002.

    Google Scholar 

  17. Hewett, A., and Eichelburg, M.,Kuratorium OFFIS e.V., Oldenburg, Germany.

  18. DICOM 3.5-2003Data Structures and Encoding, 7.1.2 Data Element Structure with explicitVR p33.

  19. DICOM 3.5-2003,Data Structures and Encoding, 7.3 Big endian versus little endian byte ordering p35.

  20. DICOM 3.5-2003,Data Structure and Encoding, 9.1UID ENCODING RULES p49

  21. DICOM 3.5-2003,Data Structures and Encoding, Section 9 Unique identifiers p49.

  22. DICOM 3.3-2003,Information Object Definitions, C.12.1.1.1 SOP Class UID, SOP Instance UID pp638-9.

  23. Oskin, M., Seibert, J. A., and Kennedy, R. L., Diagnostics and Acceptance Testing for DICOM Networks in Siebert, J.A., Filipow, L. J. and Andriole, K. P.,Practical Digital Imaging and PACS, AAPM Medical Physics Monograph No. 25. Medical Physics Publishing, Madison, WI, 347-350, 1999.

  24. DICOM 3.3-2003,Information Object Definitions, C.8.2.1.1.2 Samples Per Pixel p303.

  25. DICOM 3.3-2003,Information Object Definitions, C.8.3.1.1.2 Samples Per Pixel p309.

  26. DICOM 3.3-2003,Information Object Definitions, C.8.2.1.1.4 Bits Allocated p304.

  27. DICOM 3.3-2003,Information Object Definitions, C.8.3.1.1.4 Bits Allocated p309.

  28. DICOM 3.3-2003,Information Object Definitions, C.8.2.1.1.6 High Bit p304.

  29. DICOM 3.3-2003,Information Object Definitions, Table C.7-9 General Image Module Attributes p231.

  30. DICOM 3.3-2003,Information Object Definitions, Table C.7-5a General Series Module Attributes p221.

  31. DICOM 3.3-2003,Information Object Definitions C.7.3.1.1.2 Patient Position p224.

  32. DICOM 3.3-2003,Information Object Definitions, C.7.6.1.1.2 Image Type p235.

  33. DICOM 3.3-2003Information Object Definitions, C.8.2.1.1.1 Image Type p303.

  34. DICOM 3.3-2003,Information Object Definitions, C.8.2.1.1.3 Photomeric Interpretation p304.

  35. DICOM 3.3-2003,Information Object Definitions, C.7.6.3.1.2 Photomeric Interpretation p240.

  36. DICOM 3.3-2003,Information Object Definitions, C.8.2.1.1.4 Bits Stored p304.

  37. DICOM 3.3-2003,Information Object Definitions, C.8.2.1.1.6 High Bit p304.

  38. DICOM 3.3-2003,Information Object Definitions, Table C.8.3 CT IMAGE MODULE ATTRIBUTES p302.

  39. DICOM 3.3-2003,Information Object Definitions, C.8.3.1.1.1 Image Type p308.

  40. Image Fusion 1.0 User’s Guide, Radionics Software Applications, Chapter 3 MRI data Acquisition: The MRI Scan page 3-10 Radionics 22 Terry Avenue Burlington MA 01803 USA, 1996.

  41. DICOM 3.3-2003,Information Object Definitions, C.8.3.1.1.3 Photomeric Interpretation p309.

  42. DICOM 3.3-2003,Information Object Definitions, Table c.8-4 MRI IMAGE MODULE ATTRIBUTES p304.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ackerly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackerly, T., Geso, M., O’Keefe, G. et al. Stereotactic radiosurgery planning with ictal SPECT images. Australas Phys Eng Sci Med 27, 136–147 (2004). https://doi.org/10.1007/BF03178673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178673

Key words

Navigation