Skip to main content
Log in

Measurements of the velocity distribution in a plane turbulent jet of air

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

The present paper deals with the velocity distribution across a plane jet of air issuing with a discharge velocity of 4000 cm s−1 from a slit of 0.5 cm × 10 cm into still air, and across a plane jet of air issuing with a discharge velocity of 2000cms−1 from a slit of 1 cm × 25 cm into still air. In both cases the Reynolds number amounted to 13 300. After a survey of the relevant theories, experiments of other investigators are reviewed. The paper then describes the experimental equipment and the experiments performed. From these experiments three characteristic quantities have been derived: the turbulent shear stress, the coefficient of turbulent momentum exchange, and the mixing length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

constant

A :

constant

c :

constant

f :

function

f 1 :

correction factor for total-head reading

f 2 :

correction factor for total-head reading

F 0 :

surface area of a slit

F 1 :

cross-sectional area of a tube

h :

height of a slit

k :

constant

l :

mixing length

L :

length of a slit

p :

local velocity head in the jet

p 1 :

static pressure excess in the tube upstream of a slit

p m :

total-head in the axis of a jet

p z :

total-head at a distance Z from the axis of the jet

u :

axial velocity fluctuation

u′:

root-mean-square of\(u = \sqrt {\overline {u^2 } } \)

U :

time-mean axial velocity

U m :

time-mean velocity in the axis of a jet

U 0 :

discharge velocity of a jet

υ:

velocity fluctuation in transverse direction

V :

time-mean transverse velocity

X :

distance from a cross-section of the plane jet to the line-source from which it originates

X′ :

distance from a cross-section of the jet to the exit edge of the slit

Y :

lateral distance of a point in the jet from the axis

Z :

coordinate in the direction of the slit

ε:

coefficient of turbulent momentum exchange

η:

distance ratio Y/X

:

distance ratio for which\(\sqrt {p/p_m } \) andU/U m respectively are 0.5

μ:

coefficient of dynamic viscosity

ν:

coefficient of kinematic viscosity

ρ:

density

τ:

shear stress

ϕ:

function

Φ:

Gaussian error integral

References

  1. Forstall, W. and A. H. Shapiro, J. Appl. Mech.17 (1950) 399; addition in J. Appl. Mech.18 (1951) 219.

    Google Scholar 

  2. Alexander, L. G., T. Baron and E. W. Comings, University of Illinois Eng. Exp. Station 413, 1953.

  3. Krzywobiocki, M. Z. v., Jet Propulsion26 (1956) 760.

    Google Scholar 

  4. Förthmann, E., Ing. Archiv5 (1934) 42.

    Article  MATH  Google Scholar 

  5. Okaya, T. and T. Hasegawa, Proc. Phys. Math. Soc. Japan 3,22 (1940) 771.

    Google Scholar 

  6. Bicknell, J., Massachusetts Inst, of Techn. Course XVI, M.S. thesis 1937.

  7. Reichardt, H., Forsch. a. d. Geb. Ing. wesens13 B (1942); V.D.I. Forsch.heft 414; 2nd ed. 1951.

  8. Schmidt, W., Z. angew. Math. Mech.21 (1941) 265.

    Article  MATH  MathSciNet  Google Scholar 

  9. Townsend, A. A., The structure of turbulent shear flow, Cambridge, 1956 Ch. 8, p. 172.

  10. Pai, S. I., Viscous flow theory, Princeton N.J., 1957, II Ch. 7, p. 115; also Fluid dynamics of jets, New York, 1954.

  11. Schlichting, H., Z. angew. Math. Mech.13 (1933) 260.

    Article  MATH  Google Scholar 

  12. Bickley, W. G., Phil. Mag.23 (1937) 727.

    Google Scholar 

  13. Goldstein, S., Modern developments in fluid dynamics, Oxford 1943, I, p. 146.

  14. Corrsin, S., N.A.C.A. Wartime Rep. ACR W-90, 1944.

  15. Krzywobiocki, M. Z. v., Quart. Appl. Math.7 (1949) 313.

    MathSciNet  Google Scholar 

  16. Pai, S. I., J. Aero. Sci.16 (1949) 463.

    MathSciNet  Google Scholar 

  17. Pai, S. I., J. Aero. Sci.18 (1951) 731.

    MATH  MathSciNet  Google Scholar 

  18. Prandtl, L., Z. angew. Math. Mech.5 (1925) 136; Verh. 2 Int. Kongr. f. Techn. Mech. Zürich 1926; Z. angew. Math. Mech.22 (1942) 241.

    MATH  Google Scholar 

  19. Taylor, G. I., Proc. Roy. Soc. London A135 (1932) 685.

    Article  ADS  Google Scholar 

  20. Tollmien, W., Z. angew. Math. Mech.6 (1926) 468.

    MATH  Google Scholar 

  21. Gortler, H., Z. angew. Math. Mech.22 (1942) 244 (compare Berichtigung).

    Article  MathSciNet  Google Scholar 

  22. Howarth, L., Proc. Camb. Phil. Soc.34 (1938) 185.

    Article  MATH  Google Scholar 

  23. Taylor, J. F., Phil. D. thesis Univ. of Illinois, 1950.

  24. Richardson, G. F., Proc. Roy. Soc. London A97 (1920) 354.

    Article  ADS  Google Scholar 

  25. Flügel, G., V.D.I. Forschungsheft 395, 1939.

  26. Corrsin, S. and A. L. Kistler, N.A.C.A. Techn. Rep. 1244, 1955.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Hegge Zijnen, B.G. Measurements of the velocity distribution in a plane turbulent jet of air. Appl. sci. Res. 7, 256–276 (1958). https://doi.org/10.1007/BF03185052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185052

Keywords

Navigation