Skip to main content
Log in

Preparation and optical properties of composite thin films with embedded InP nanoparticles

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

InP nanoparticles embedded in SiO2 thin films were prepared by radio-frequency magnetron co-sputtering. We analyzed the structure and growth behavior of the composite films under different preparation conditions. X-ray diffraction and Raman spectroscopy analyses indicate that InP nanoparticles have a polycrystalline structure. The average size of InP nanoparticles is in the range of 3–10 nm. The broadening and red shift of the Raman peaks were observed, which can be interpreted by the phonon confinement model. Optical transmission spectra indicate that the optical absorption edges of the films can be modulated in the visible light range. The marked blue shift of the absorption edge with respect to that of bulk InP is explained by the quantum confinement effect. The theoretical values of the blue shift predicted by the effective mass approximation model are different from the experimental results for the InP-SiO2 system. Analyses indicate that the exciton effective mass of the InP nanoparticles is not constant and is inverse relative to the particles radius, which may be the main reason that results in the discrepancy between the theoretical and the experimental result. We discussed the possible transition of the direct band gap to the indirect band gap for InP nanoparticles embedded in SiO2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain, R. K., Lind, R. C., Degenerate four-wave mixing in semiconductor-doped glasses, J. Opt. Soc. Am., 1983, 73(5): 647.

    Article  Google Scholar 

  2. Yumoto, J., Fukushima, S., Kubodera, K., Observation of optical bistability in CdxSe1−x-doped glasses with 25-psec switching time, Opt. Lett., 1987, 12(10): 832.

    Article  Google Scholar 

  3. Maeda, Y., Tsukamoto, N., Yazawa, Y. et al., Visible Photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices, Appl. Phys. Lett., 1991, 59(24): 3168.

    Article  Google Scholar 

  4. Hayashi, M., Iwano, T., Nasu, H. et al., Quantum size effect of ZnSe microcrystal-doped SiO2 glass thin films prepared by RF-sputttring method, J. Mater. Res., 1997, 12(10): 2552.

    Article  Google Scholar 

  5. Rolo, A. G., Vieira, L. G., Gomes, M. J. M., et al., Growth and characterisation of cadmium sulphide nanocrystals embedded in silicon dioxide films, Thin Solid Films, 1998, 312: 348.

    Article  Google Scholar 

  6. Lu Shenguo, Zhang Liangying, Yao Xi, Structure and properties of ZnS-SiO2 nanocomposite material, Chinese Science Bulletin, 1997, 42(1): 106.

    Google Scholar 

  7. Shi Wangzhou, Lin Kuixun, Lin Xuanying, Structural and optical characteristics of SiO2 thin film containing GaAs microcrystallites, J. Appl. Phys., 1997, 81(6): 2822.

    Article  Google Scholar 

  8. Zhu Kaigui, Shi Jiazhong, Wei Yanfeng et al., Preparation of InSb nanoparticles embedded in SiO2 thin films, Chinese Science Bulletin, 1998, 43(13): 1389.

    Google Scholar 

  9. Shi Jianzhong, Zhu Kaigui, Zhang Lide, Composition modulation in InxGa1−xAs nanocrystals embedded in SiO2 film by radio frequency magnetron co-sputtering, Appl. Phys. Lett., 1998, 72(25): 3341.

    Article  Google Scholar 

  10. Nemanich, R. J., Solin, S. A., Martin, R. M., Light scattering study of boron nitride microcrystals, Phys. Rev. B., 1981, 23(12): 6348.

    Article  Google Scholar 

  11. Campbell, I. H., Fauchet, P. M., The effects of microcrystal size and shape on the phonon Raman spectra of crystalline semiconductors, Solid State Communications, 1986, 58(10): 739.

    Article  Google Scholar 

  12. Cerdeira, F., Buchenauer, C. J., Pollak, F. H. et al., Stress-induced shifts of first-order Raman frequencies of diamond and zincblende-type semiconductors, Phys. Rev. B., 1972, 5(2): 580.

    Article  Google Scholar 

  13. Wu, W. Y., Schulman, J. N., Hsu, T. Y. et al. Effect of size nonuniformity on the absorption spectrum of a semiconductor quantum dot system, Appl. Phys. Lett., 1987, 51(10): 710.

    Article  Google Scholar 

  14. Brus, L. E., Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys., 1984, 80(9): 4403.

    Article  Google Scholar 

  15. Kayanuma, Y., Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B., 1988, 38(14): 9797.

    Article  Google Scholar 

  16. Liu, C. T., Lin, S. Y., Tsui, D. C. et al., Cyclotron resonance measurements of electron effective mass in strained AlGaAs/ InGaAs/GaAs pseudomorphic structures, Appl. Phys. Lett., 1988, 53(25): 2510.

    Article  Google Scholar 

  17. Fu Huaxiang, Zunger, A., Quantum-size effects on the pressure-induced direct-to-indirect band-gap transition in InP quantum dots, Phys. Rev. Lett., 1998, 80(24): 5397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maojun Zheng.

About this article

Cite this article

Zheng, M., Zhang, L., Li, G. et al. Preparation and optical properties of composite thin films with embedded InP nanoparticles. Chin.Sci.Bull. 46, 461–465 (2001). https://doi.org/10.1007/BF03187256

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03187256

Keywords

Navigation