Skip to main content
Log in

Mechanical properties of silica nanoparticle reinforced poly(ethylene 2, 6-naphthalate)

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We added surface-modified silica nanoparticles to poly(ethylene 2,6-naphthalate) (PEN) to investigate their effect on the mechanical properties on the PEN nanocomposite material. The torque and total torque values of the composites decreased in the silica nanoparticle composites. The tensile modulus of the composites reinforced with unmodified silica nanoparticles increased upon increasing the silica content, while the tensile strength and elongation decreased accordingly. In contrast, stearic acid-modified, silica nanoparticle reinforced PEN composites exhibited an increase in elongation and a decrease in tensile modulus upon addition of the silica nanoparticles because the stearic acid that had adsorbed onto the surface of the silica nanoparticle in multilayers could act as a plasticizer during melt compounding. Stearic acid modification had a small effect on the crystallization behavior of the composites. We calculated theoretical values of the tensile modulus using the Einstein, Kerner, and Nielsen equations and compared these values with the experimental data obtained from the composites. The parameters calculated using the Nielsen equation and the Nicolais- Narkis model revealed that the interfacial adhesion between silica nanoparticles and the PEN matrix could be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Kim, S. W. Kang, J. K. Park, and Y. H. Park,J. Appl. Polym. Sci.,70, 1065 (1998).

    Article  CAS  Google Scholar 

  2. S. H. Kim and S. W. Kang,Fibers and Polymers,1, 83 (2000).

    Article  CAS  Google Scholar 

  3. J. Y. Kim, E. S. Seo, S. H. Kim, and T. Kikutani,Macromol. Res.,11, 62 (2003).

    Article  CAS  Google Scholar 

  4. J. Y. Kim, S. H. Kim, and T. Kikutani,J. Polym. Sci., Part B: Polym. Phys.,42, 395 (2004).

    Article  CAS  Google Scholar 

  5. Y. Ulcer and M. Cakmak,Polymer,35, 5651 (1994).

    Article  Google Scholar 

  6. S. H. Kim, S. H. Ahn, and T. Hirai,Polymer,44, 5625 (2003).

    Article  CAS  Google Scholar 

  7. J. W. Cho and D. R. Paul,Polymer,42, 1083 (2001).

    Article  CAS  Google Scholar 

  8. S. S. Im, S. C. Chung, W. G. Hahm, and S. G. Oh,Macromol. Res.,10, 221 (2002).

    Article  Google Scholar 

  9. M. Fuji, T. Takei, T. Watanabe, and M. Chikazawa,Colloids and Surfaces A: Physicochem. Eng. Aspects,154, 13 (1999).

    Article  CAS  Google Scholar 

  10. M. W. Lee, X. Hu, L. Li, and K. C. Tam,Compos. Sci. Tech.,63, 339 (2003).

    Article  CAS  Google Scholar 

  11. E. D. Bliznakov, C. C. White, and M. T. Shaw,J. Appl. Polym. Sci.,77, 3220 (2000).

    Article  CAS  Google Scholar 

  12. C. M. Liauw, G. C. Lees, S. J. Hurst, R. N. Rothon, and S. Ali,Composites Part A,29A, 1313 (1998).

    Article  CAS  Google Scholar 

  13. C. M. Liauw, R. N. Rothon, G. C. Lees, P. Dumitru, Z. Iqbal, V. Khunova, and P. Alexy,Proceedings of Functional Effect Fillers 2000, Berlin, Germany, 2000.

  14. S. H. Ahn, S. H. Kim, and S. G. Lee,J. Appl. Polym. Sci., Accepted.

  15. Q. Liu, J. Ding, D. E. Chambers, S. Debnath, S. L. Wunder, and G. R. Baran,J. Biomed. Mater. Res.,57, 384 (2001).

    Article  CAS  Google Scholar 

  16. K. Premphet and P. Horanont,J. Appl. Polym. Sci.,74, 3445 (1999).

    Article  Google Scholar 

  17. S. Buchner, D. Wiswe, and H. G. Zachmann,Polymer,30, 480 (1989).

    Article  CAS  Google Scholar 

  18. E. W. Washburn,Phys. Rev. Ser.,17, 273 (1921).

    Google Scholar 

  19. L. E. Nielsen and R. F. Landel,Mechanical properties of polymers and composites, 2nd ed. Marcel Dekker, New York, 1994.

    Google Scholar 

  20. G. G. Echevarria, J. I. Eguiazabal, and J. Nazabal,Eur. Polym. J.,34, 1213 (1998).

    Article  Google Scholar 

  21. A. Einstein,Ann. Phys.,19, 289 (1906).

    Article  CAS  Google Scholar 

  22. E. J. Guth,J. Appl. Phys.,16, 20 (1945).

    Article  CAS  Google Scholar 

  23. E. H. Kerner,Proc. Phys. Soc. B,69, 808 (1956).

    Article  Google Scholar 

  24. L. E. Nielsen,Appl. Polym. Symp.,12, 249 (1969).

    Google Scholar 

  25. T. B. Lewis and L. E. Nielsen,J. Appl. Polym. Sci.,14, 1449 (1970).

    Article  CAS  Google Scholar 

  26. K. H. Sweeny and R. D. Geckler,J. Appl. Phys. 25, 1135 (1954).

    Article  CAS  Google Scholar 

  27. L. E. Nielsen,J. Appl. Polym. Sci.,10, 97 (1966).

    Article  CAS  Google Scholar 

  28. L. Nicolais and M. Narkis,Polym. Eng. Sci.,11, 194 (1971).

    Article  CAS  Google Scholar 

  29. A. K. Gupta, S. N. Purwar,J. Appl. Polym. Sci.,29, 3513 (1984).

    Article  CAS  Google Scholar 

  30. S. Sahu, and L. J. Broutman,Polym. Eng. Sci.,12, 91 (1972).

    Article  CAS  Google Scholar 

  31. E. B. Prestridge,J. Appl. Polym. Sci.,7, 27 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, S.H., Kim, S.H., Kim, B.C. et al. Mechanical properties of silica nanoparticle reinforced poly(ethylene 2, 6-naphthalate). Macromol. Res. 12, 293–302 (2004). https://doi.org/10.1007/BF03218403

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218403

Keywords

Navigation