Skip to main content
Log in

Electroactive polymer composites as a tactile sensor for biomedical applications

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Modern applications could benefit from multifunctional materials having anisotropic optical, electrical, thermal, or mechanical properties, especially when coupled with locally controlled distribution of the directional response. Such materials are difficult to engineer by conventional methods, but the electric field-aided technology presented herein is able to locally tailor electroactive composites. Applying an electric field to a polymer in its liquid state allows the orientation of chain- or fiber-like inclusions or phases from what was originally an isotropic material. Such composites can be formed from liquid solutions, melts, or mixtures of pre-polymers and cross-linking agents. Upon curing, a “created composite” results; it consists of these “pseudofibers” embedded in a matrix. One can also create oriented composites from embedded spheres, flakes, or fiber-like shapes in a liquid plastic. Orientation of the externally applied electric field defines the orientation of the field-aided self-assembled composites. The strength and duration of exposure of the electric field control the degree of anisotropy created. Results of electromechanical testing of these modified materials, which are relevant to sensing and actuation applications, are presented. The materials’ micro/nanostructures were analyzed using microscopy and X-ray diffraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. Kruger, M. Losche, and F. Kremer,Nature,410, 447 (2001).

    Article  CAS  Google Scholar 

  2. R. Pelrine, R. Kornbluh, Q. B. Pei, and J. Joseph,Science,287, 836 (2000).

    Article  CAS  Google Scholar 

  3. F. M. Guillot, J. Jarzynski, and E. Balizer,J. Acoustical Society of America,110, 2980 (2001).

    Article  CAS  Google Scholar 

  4. G. H. Kim and Y. M. Shkel,J. Mater. Res.,19, 1164 (2004).

    Article  CAS  Google Scholar 

  5. C. P. Bowen, T. R. Shrout, R. E. Newnham, and C. A. Randall,J. Intel. Mater. Sys. Struct.,6, 159 (1995).

    Article  CAS  Google Scholar 

  6. C. P. Bowen, R. E. Newnham, and C. A. Randall,J. Mat.Res.,13, 205 (1998).

    Article  CAS  Google Scholar 

  7. M. Hase, M. Egashira, and N. Shinya,J. Intel. Mater. Sys. Struct.,10, 508 (1999).

    Article  Google Scholar 

  8. B. Liu and M. T. Shaw,J. Rheol.,45, 641 (2001).

    Article  CAS  Google Scholar 

  9. G. H. Kim and Y. M. Shkel,J. Intel. Mater. Sys. Struct.,13, 479 (2002).

    Article  CAS  Google Scholar 

  10. A. T. Horvat, D. J. Klingenberg, and Y. M. Shkel,Int. J. Mod. Phys., B,16, 2690 (2002).

    Article  Google Scholar 

  11. Y. M. Shkel and D. J. Klingenberg,J. Rheol.,45, 1307 (1999). 447 (2001).

    Article  Google Scholar 

  12. M. Shkel and D. J. Klingenberg,J. Appl. Phys.,80, 4566 (1996).

    Article  CAS  Google Scholar 

  13. J. E. Martin and R. A. Anderson,J. Chem. Phys.,111, 4273 (1999).

    Article  CAS  Google Scholar 

  14. J. A. Stratton,Electromagnetic Theory, McGraw-Hill, New York, 1941.

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media, Pergamon, New York, 1984.

    Google Scholar 

  16. J. Happel and H. Brenner,Low Reynolds Number Hydrodynamics (with special applications to particulate media), Prentice-Hall, 1965.

  17. R. E. Peterson,Stress Concentrations, Wiley, New York, 1974.

    Google Scholar 

  18. B. J. Rauch and R. E. Rowlands,Thermoelastic Stress Analysis, Handbook on Experimental Mechanics, A. S. Kobayashi, Ed., VCH Publishers, New York, 1993, pp 581–599.

    Google Scholar 

  19. T. R. Filanc-Bowen, G. H. Kim, and Y. M. Shkel,Preceeding of SPIE,5051, 218 (2003).

    Article  Google Scholar 

  20. T. R. Filanc-Bowen, G. H. Kim, and Y. M. Shkel,IEEE Int. Conf. Sensors,2, 1648 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G. Electroactive polymer composites as a tactile sensor for biomedical applications. Macromol. Res. 12, 564–572 (2004). https://doi.org/10.1007/BF03218445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218445

Keywords

Navigation