Skip to main content
Log in

Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide

  • Communications
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study we investigated bacterial and cell adhesion to poly(propylene carbonate) (PPC) films, that had been synthesized by the copolymerization of carbon dioxide (a global warming chemical) with propylene oxide. We also assessed the biocompatibility and biodegradability of the filmsin vivo, and their oxidative degradation in vitro. The bacteria adhered to the smooth, hydrophobic PPC surface after 4 h incubation.Pseudomonas aeruginosa andEnterococcus faecalis had the highest levels of adhesion,Escherichia coli andStaphylococcus aureus had the lowest levels, andStaphylococcus epidermidis was intermediate. In contrast, there was no adhesion of human cells (cell line HEp-2) to the PPC films, due to the hydrophobicity and dimensional instability of the surface. On the other hand, the PPC films exhibited good biocompatibility in the mouse subcutaneous environment. Moreover, contrary to expectation the PPC films degraded in the mouse subcutaneous environment. This is the first experimental confirmation that PPC can undergo surface erosion biodegradationin vivo. The observed biodegradability of PPC may have resulted from enzymatic hydrolysis and oxidative degradation processes. In contrast, the PPC films showed resistance to oxidative degradationin vitro. Overall, PPC revealed high affinity to bioorganisms and also good biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Paul and C. M. Pradier, Editors,Carbon Dioxide Chemistry: Environmental Issues, Royal Soc. Chem., Cambridge, 1994.

    Google Scholar 

  2. J. H. Jung, M. Ree, and T. Chang,J. Polym. Sci. Part A: Polym. Chem.,37, 3329 (1999).

    Article  CAS  Google Scholar 

  3. J. S. Kim, H. Kim, and M. Ree,Chem. Mater.,16, 2981 (2004).

    Article  CAS  Google Scholar 

  4. S. Inoue, H. Koinuma, and T. Tsuruta,Makromol. Chem.,130, 210 (1969).

    Article  CAS  Google Scholar 

  5. K. Soga, E. Imai, and I. Hattori,Polymer J.,13, 407 (1981).

    Article  CAS  Google Scholar 

  6. D. J. Darensbourg, J. R. Wildeson, J. C. Yarbrough, and J. H. Reibenspies,J. Am. Chem. Soc.,122, 12487 (2000).

    Article  CAS  Google Scholar 

  7. M. Super, E. Berluche, C. Costello, and E. Beckman,Macromolecules,30, 368 (1997).

    Article  CAS  Google Scholar 

  8. C. S. Tan and T. J. Hsu,Macromolecules,30, 3147 (1997).

    Article  CAS  Google Scholar 

  9. M. Cheng, E. B. Lobkovsky, and G. W. Coates,J. Am. Chem. Soc.,120, 11018 (1998).

    Article  CAS  Google Scholar 

  10. M. Ree, J. Y. Bae, J. H. Jung, and T. J. Shin,Korea Polym. J.,7, 333 (1999).

    CAS  Google Scholar 

  11. M. Ree, J. Y. Bae, J. H. Jung, T. J. Shin, Y. T. Hwang, and T. Chang,Polym. Eng. Sci.,40, 1542 (2000).

    Article  CAS  Google Scholar 

  12. J. S. Kim, M. Ree, T. J. Shin, O. H. Han, S. J. Cho, Y. T. Hwang, J. Y. Bae, J. M. Lee, R. Ryoo, and H. Kim,J. Catalysis,218, 209 (2003).

    Article  CAS  Google Scholar 

  13. J. S. Kim, M. Ree, S. W. Lee, W. Oh, S. Baek, B. Lee, T. J. Shin, K. J. Kim, B. Kim, and J. Luning,J. Catalysis,218, 386 (2003).

    Article  CAS  Google Scholar 

  14. M. Ree, J. Y. Bae, J. H. Jung, and T. J. Shin,J. Polym. Sci. Part A: Polym. Chem.,37, 1863 (1999).

    Article  CAS  Google Scholar 

  15. Y. T. Hwang, H. Kim, and M. Ree,Macromol. Symp.,224, 227 (2005).

    Article  CAS  Google Scholar 

  16. M. Ree, J. Y. Bae, J. H. Jung, T. J. Shin, Y. T. Hwang, and T. Chang,Polym. Eng. Sci.,40, 1542 (2000).

    Article  CAS  Google Scholar 

  17. B. Lee, J. H. Jung, and M. Ree,Macromol. Chem. Phys.,201, 831 (2000).

    Article  CAS  Google Scholar 

  18. Y. Hwang, J. Jung, M. Ree, and H. Kim,Macromolecules,36, 8210 (2003).

    Article  CAS  Google Scholar 

  19. I. Arvanitoyannis,Rev. Macromol. Chem. Phys.,C39, 205 (1999).

    CAS  Google Scholar 

  20. G. Scott and D. Gilead,Degradable Polymer, Chapman Hall, London, 1995.

    Book  Google Scholar 

  21. Y. Hwang, M. Ree, and H. Kim,Catalysis Today,115, 288 (2006).

    Article  CAS  Google Scholar 

  22. A. J. Kinloch,Adhesion and Adhesives: Science and Technology, Chapman Hall, New York, 1987, p 30.

    Google Scholar 

  23. D. K. Owens and R. C. Wendt,J. Appl. Polym. Sci.,13, 1740 (1969).

    Article  Google Scholar 

  24. J. H. Chung, K. H. Park, B. M. Seo, E. S. Kim, J. R. Hong, I. H. Chung, N. Kang, B. M. Min, Y. H. Choung, T. Akaike, and P. H. Choung,J. Biomed. Mater. Res.,67A, 1055 (2003).

    Article  CAS  Google Scholar 

  25. J. Watanabe and K. Ishihara,Artif. Organs,27, 242 (2003).

    Article  CAS  Google Scholar 

  26. E. Imbert, A. A. Poot, C. G. Figdor, and J. Feijen,J. Biomed. Mater. Res.,56, 376 (2001).

    Article  CAS  Google Scholar 

  27. F. E. Khadali, G. Helary, G. Pavon-Djavid, and V. Migonney,Biomacromolecules,3, 51 (2002).

    Article  Google Scholar 

  28. R. S. Labow, E. Meek, L. A. Matheson, and J. P. Santerre,Biomaterials,23, 3936 (2002).

    Article  Google Scholar 

  29. E. Christenson, J. Anderson, and A. Hiltner,J. Biomed. Mater. Res.,70A, 245 (2004).

    Article  CAS  Google Scholar 

  30. (30) W. G. Characklis and K. C. Marshall, Editors,Biofilms, Wiley, New York, 1990.

    Google Scholar 

  31. (31) M. Fletcher, Editor,Bacterial Adhesion: Molecular and Ecological Diversity, Wiley-Liss, New York, 1996.

    Google Scholar 

  32. B. Bendinger, H. H. M. Rijnaarts, K. Altendorf, and A. J. B. Zehnder,Appl. Environ. Microbiol.,59, 3973 (1993).

    CAS  Google Scholar 

  33. M. Rosenber and S. Kjelleberg,Adv. Microbial Ecology,9, 353 (1986).

    Google Scholar 

  34. R. Bullitt and L. Makowski,Nature,373, 164 (1995).

    Article  CAS  Google Scholar 

  35. G. M. Bruinsma, H. C. van der Mei, and H. J. Busscher,Biomaterials,22, 3217 (2001).

    Article  CAS  Google Scholar 

  36. H. C. van der Mei, B. van de Belt-Gritter, G. Reid, H. Bialkowska-Hobrzanska, and H. J. Busscher,Microbiology,143, 3861 (1997).

    Article  Google Scholar 

  37. A. E. van Merode, H. C. van der Mei, H. J. Busscher, K. Waar, and B. P. Krom,Microbiology,152, 807 (2006).

    Article  Google Scholar 

  38. M. A. Hjortso,Cell adhesion: Fundamentals and Biotechnological Applications, Dekker, New York, 1995.

    Google Scholar 

  39. S. V. Fulzele, P. M. Satturwar, and A. K. Dorle,Eur. J. Pharm. Sci.,20, 53 (2003).

    Article  CAS  Google Scholar 

  40. M. A. Schubert, M. J. Wiggins, M. P. Schaefer, A. Hiltner, and J. M. Anderson,J. Biomed. Mater. Res.,29, 337 (1995).

    Article  CAS  Google Scholar 

  41. J. H. Jung, M. Ree, and H. Kim,Catalysis Today,115, 283 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moonhor Ree or Heesoo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G., Ree, M., Kim, H. et al. Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide. Macromol. Res. 16, 473–480 (2008). https://doi.org/10.1007/BF03218547

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218547

Keywords

Navigation