Skip to main content
Log in

Selecting high-temperature structural intermetallic compounds: The engineering approach

  • Structural Intermetallic
  • Featured Overview Part II
  • Published:
JOM Aims and scope Submit manuscript

Abstract

While there are nearly 300 high-melting-temperature intermetallic compounds, numerous factors limit the commercial viability of these materials for structural applications. Once the desirability of a material’s crystal structure has been determined, the engineer must then focus on the compound’s oxidation and corrosion resistance, its cost and any associated environmental hazards that may diminish its practical value. The final engineering limitations are imposed by process capabilities, which must be improved if high-temperature intermetallics are to one day emerge from the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell, D.N. Duhl, D.K. Gupta and K.D. Sheffler, Journal of Metals, 39(11) (1987).

    Google Scholar 

  2. H. Inouye, Niobium—Proceedings of the International Symposium, ed. H. Stuart (1981), p. 615.

    Google Scholar 

  3. A.J. Meyer, Jr., and G.C. Deutsch, Cermets, ed. J.R. Tinklepaugh and W.B. Crandall (New York: W.B. Reinhold Publishing Corporation, 1960), pp. 196–207.

    Google Scholar 

  4. Intermetallic Compounds, ed. J.H. Westbrook (New York: John Wiley and Sons, Inc., 1967).

    Google Scholar 

  5. Ordered Alloys—Structural Application and Physical Metallurgy, ed. B.H. Kear, proceedings of the Third Bolton Landing Conference, September 1969.

    Google Scholar 

  6. R. Flukiger, Superconductor Material Science Metallurgy, Fabrication and Applications, ed. S. Foner and Brian B. Schwartz (Plenum Press, 1981), pp. 511–604.

    Google Scholar 

  7. J. Booker, R.M. Paine and A.J. Stonehouse, “Investigation of Intermetallic Compounds for Very High Temperature Applications,” WADD TR 60-889 (1961).

    Google Scholar 

  8. H.A. Lipsitt, High Temperature Ordered Intermetallic Alloys,ed. C.C. Koch et al. (Pittsburgh, PA: MRS, 1985), pp. 351–364.

    Google Scholar 

  9. CM. Adam et al., Development of Iron Aluminide, AFWAL/MLLM contract F33615-84-C-5110, Pratt & Whitney.

  10. C.C. Law and M.J. Blackburn, Rapidly Solidified Lightweight Durable Disk Material, AFWAL/MLLM contract F33615-84-C-5067, Pratt & Whitney.

  11. I. Baker and P.R. Munroe, “Improving Intermetallic Ductility and Toughness,” Journal of Metals, 40(2) (1988), pp. 28–31.

    CAS  Google Scholar 

  12. J.H. Wernick, op. cit. 4, p. 197.

    Google Scholar 

  13. E.S. Fisher, Metallurgical Transactions, 11 (1980), p. 103.

    Google Scholar 

  14. A.E. Gemma, B.S. Langer and G. Leverant, Thermal Fatigue of Materials and Components, ASTM STP 612, ed. D. Spera and D. Mowbrag (Philadelphia, PA: ASTM, 1976).

    Google Scholar 

  15. K. Vedula et al., op. cit. 8, pp. 411–421.

    Google Scholar 

  16. D.P. Pope and S.S. Ezz, Int. Met.. Rev., 29 (1984), p. 136.

    CAS  Google Scholar 

  17. D.M. Shah and D.N. Duhl, Superalloys 1984, ed. M. Gell et al. (Warrendale, PA: TMS, 1984), pp. 105–114.

    Google Scholar 

  18. D.L. Anton and D.M. Shah, High-Temperature Ordered Intermetallic Alloys II, ed. N.S. Stoloff, C.C. Koch, CT. Liu and O. Izumi (Pittsburgh, PA: MRS, 1987).

    Google Scholar 

  19. J.E. Dorn, Creep and Recovery, (Metals Park, OH: ASM, 1957).

    Google Scholar 

  20. J.E. Dorn, Creep and Fracture of Metals at High Temperatures (London: National Physical Laboratory, 1956).

    Google Scholar 

  21. V.N. Agafonov et al., Vstn. Mosk. Univ. Khim, 16 (1975), p. 121.

    CAS  Google Scholar 

  22. S.M. Russel, C.C Law, M.J. Blackburn, P.C. Clapp and D.M. Pease, Lightweight Disk Alloy Development, AFWAL/MLLM contract F33615-86-C-5037, Pratt & Whitney.

  23. L. Brewer, Alloying, ed. J. Walter et al. (Metals Park, OH: ASM, 1988).

    Google Scholar 

  24. K. Aoki and O. Izimi, J. Japan Inst. Met.., 43 (1979), pp. 1190.

    CAS  Google Scholar 

  25. H.H. Stadelmaier and L.J. Hvelter, ActaMet., 6 (1958), pp. 367–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anton, D.L., Shah, D.M., Duhl, D.N. et al. Selecting high-temperature structural intermetallic compounds: The engineering approach. JOM 41, 12–17 (1989). https://doi.org/10.1007/BF03220324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220324

Keywords

Navigation