Skip to main content
Log in

The eelectrochemical processing of refractory metals

  • Refractory Metal
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electrochemical processing is used extensively in the primary extraction of metals (electrowinning), the purification and recycling of metals (electrorefining), and the formation of metal coatings (electroplating). With respect to the refractory metals, electrochemical processing is conducted almost exclusively in nonaqueous media, predominantly in molten salts. Electrolysis infused salts as well as other nonaqueous media has enormous potential for materials processing. First, because of the special attributes of nonaqueous electrolytes, electrochemical processing in these media has an important role to play in the generation of advanced materials—materials with specialized chemistries or tailored microstructures (electrosynthesis). Second,as environmental quality standards rise beyond the capabilities of classical metals extraction technologies to comply, electrochemical processing may prove to be the only acceptable route from ore to metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Considine, ed., Van Nostrand's Scientific Encyclopedia, 7th ed. (New York: Van Nostrand Reinhold, 1989), p. 578.

    Google Scholar 

  2. Ibid., p. 579.

    Google Scholar 

  3. M. Blander, ed., Molten Salt Chemistry (New York: Interscience, 1964).

    Google Scholar 

  4. B.R. Sundheim, ed., Fused Salts (New York: McGraw-Hill Book Co., 1964).

    Google Scholar 

  5. G. Mamantov, ed., Molten Salts (New York: Marcel Dekker, 1969).

    Google Scholar 

  6. G. Mamantov and R. Marassi, ed., Molten Salt Chemistry (Dordrecht, the Netherlands: D. Reidel Publ. Co., 1987).

    Google Scholar 

  7. J. Lumsden, Thermodynamics of Molten Salt Mixtures (New York: Academic Press, 1966).

    Google Scholar 

  8. H. Bloom, The Chemistry of Molten Salts (New York: W.A. Benjamin, 1967).

    Google Scholar 

  9. F.D. Richardson,Physical Chemistry of Melts in Metallurgy, vols. 1 and 2 (Lodon: Academic Press, 1974).

  10. Iu. K Delimarskii and B.F. Markov, Electrochemistry of Fused Salts, ed. Adam Peiperl (Washington, D.C.: Sigma Press, 1961).

    Google Scholar 

  11. G.J. Janz, Molten Salts Handbook (New York: Academic Press, 1967).

    Google Scholar 

  12. G.J. Janz et al., “Fluorides and Mixtures—Electrical Conductance, Density, Viscosity and Surface Tension Data,” Molten Salts, 3(1) (1974), pp. 117–140.

    Google Scholar 

  13. G.J. Janz, “Molten Salts Data as Reference Standards for Density, Surface Tension, Viscosity and Electrical Conductance: KNO3 and NaCl,” J. Physical and Chemical Ref. Data, 9(4) (1980), pp. 791–829.

    CAS  Google Scholar 

  14. J.A. Plambeck, Encyclopedia of Electrochemistry of the Elements, vol. 10, ed. A.J. Bard (New York: Marcel Dekker, Inc., 1976).

    Google Scholar 

  15. D.G. Lovering, ed., Molten Salt Technology (New York: Plenum Press, 1982).

    Google Scholar 

  16. A. Kuhn, ed., Industrial Electrochemical Processes (New York: American Elsevier Publishing Co., 1971).

    Google Scholar 

  17. G. Mamantov, C.B. Mamantov and J. Braunstein, eds., Advances in Molten Salt Chemistry, vol. 6 (Amsterdam, the Netherlands: Elsevier Science Publishers, B.V., 1987).

    Google Scholar 

  18. D.G. Lovering and R.J. Gale, eds., Molten Salt Techniques, vol. 3 (New York: Plenum Press, 1987).

    Google Scholar 

  19. C.L. Hussey et al., eds., Proceedings of the Seventh International Symposium on Molten Salts (Pennington, NJ: the Electrochemical Society, 1990).

    Google Scholar 

  20. D.R. Sadoway, “A Materials Systems Approach to Selection and Testing of Nonconsumable Anodes for the Hall Cell,” Light Metals 1990, ed. C.A. Bickert (Warrendale, PA: TMS, 1990), pp. 403–407.

    Google Scholar 

  21. V.V. Stender, P.B. Zivotinsky and M.M. Stroganoff, Trans. Electrochem. Soc., 65 (1934), pp. 189–213.

    Google Scholar 

  22. D. Inman and S.H. White, “The Production of Refractory Metals by the Electrolysis of Molten Salts: Design Factors and Limitations,” J. Appl. Electrochem., 8(5) (1978), pp. 375–390.

    CAS  Google Scholar 

  23. P.R. Juckniess and D.R. Johnson, “Apparatus for Electrowinning Multivalent Metals,” U.S. patent no. 4,116,801 (September 26, 1978).

    Google Scholar 

  24. G. Lorthioir and M. Nardin, “Titanium by Electrolytic Reduction in a Bath of Molten Titanium Halides,” French patent no. 2,359,221 (February 17, 1978).

    Google Scholar 

  25. M. Onozawa, “Preparation of Titanium or Its Alloy by Fused Salt Electrolysis,” Japanese patent no. 63/118089 A2 188/118089] (May 23, 1988).

    Google Scholar 

  26. J. Cohen and G. Lorthioir, “Method and Apparatus for Electrodeposition of a Metal from a Molten Halide Salt Bath,” French patent no. 2,560,896 (September 13, 1985).

    Google Scholar 

  27. P. Paschen, A. Anzinger and H. Feichtner, “Titanium—A Techno-Commercial Evaluation of the Reduction Process,” Refractory Metals—Extraction, Processing and Applications, ed. K.C. Liddell, D.R. Sadoway and R.G. Bautista (Warrendale, PA: TMS, 1990), pp. 7–14.

    Google Scholar 

  28. P. Pint and S.N. Flengas, “Production of Zirconium Metal by Fused Salt Electrolysis,” Trans. Inst. Min. Metall., 87 C (March, 1978), pp. 29–49.

    Google Scholar 

  29. A.V. Kovalevskii, L.V. Kovalevskaya and I.F. Nichkov, “Electrolysis Conditions for KCl-K2ZrF6 and NaCl-K2ZrF6 Molten Salt Mixtures,” Tsvetn. Met. (8) (1983), pp. 62–64.

  30. A.P. Lamaze and D. Charquet, “Development of Hafnium Tetrachloride Electrolysis,” op. cit. 27, pp. 231–254.

    Google Scholar 

  31. L.E. Ivanovskii, A.V. Lukinskikh and V.P. Barukhtin, “Production of Refractory Metals by Electrolysis of Molten Halide Baths,” deposited document, VINITI 502-79, 45-8 (1979); Chem. Abs. 92:11840s.

    Google Scholar 

  32. P. Paschen and W. Koeck, “Fused Salt Electrolysis of Tantalum,” op. cit. 27, pp. 221–230.

    Google Scholar 

  33. G.F. Warren et al., “Process for the Electrolytic Production of Metals,” European patent appl. no. 219,157 Al (April 22, 1987).

    Google Scholar 

  34. E. Tanaka, T. Kikuchi and T. Tsumori, “Reduction of High Valent Titanium in a Fused Salt Bath Used for Titanium Refining,” Japanese patent no. 53/22111 [78/22111] (March 1, 1978).

    Google Scholar 

  35. K Shimotori et al., “Highly Pure Titanium and Process for Producing It,” European patent appl. no. 248,338 Al (December 9, 1987).

    Google Scholar 

  36. J.M.J. Paixao, F. Teixeira de Ahneida and R.L. Combes, “Electrolytic Purification of Titanium Obtained by Aluminothermal or Magnesium-Thermal Reduction of Anatase Concentrates,” Brazilian patent no. 84/5093 A (May 13, 1986).

    Google Scholar 

  37. S.N. Chintamani et al., “Recycling Off-Grade Zircaloy Scrap Using a Molten Salt Refining Process,” ASTM STP 939 (Zirconium Nucl. Ind.) (1978), pp. 136–145.

    Google Scholar 

  38. G.J. Kipouros and S.N. Flengas, “Electrorefining of Zirconium Metal in Alkali Chloride and Alkali Fluoride Fused Electrolytes,” J. Electrochem. Soc., 132(5) (1985), pp. 1087–1098.

    CAS  Google Scholar 

  39. A.P. Khramov, L.E. Ivanovskii and V.P. Batukhtin, “Effect of Vibration on Cathode Polarization and Current Efficiency in Refining of Niobium in Chloride-Fluoride Melts,” Elektrokhimiva, 21(6) (1985), pp. 802–804.

    CAS  Google Scholar 

  40. K Schulze and M. Krehl, “The Preparation of Pure Niobium for Neutron Dosimetry Purposes,” Nucl. Instrum. Methods Phys. Res., A236(3) (1985), pp. 609–616.

    CAS  Google Scholar 

  41. M. Armand and J.P. Gamier, “Method for Improving the Purity of Transition Metals Obtained by Electrolysis of Their Halides in Molten Salt Baths,” French patent no. 2, 579, 230 Al (September 26, 1986).

    Google Scholar 

  42. A.L. Glagolevskaya et al., “Effect of Anion Composition of Electrolytes on the Disproportionation Reactions of Transition Metal Compounds in Molten Salts,” Rasplavy, 1(6) (1987), pp. 81–85.

    CAS  Google Scholar 

  43. A.V. Kovalenskii et al., “Physicochemical Properties of Molten NaCl-Na2ZrF6 Mixtures,” Izv.Vyssh. Uchebn.Zaved., Tsvetn. Metall, (5) (1987), pp. 115–116.

  44. G.S. Chen, M. Okido and T. Oki, “Electrochemical Studies of Titanium in Fluoride-Chloride Molten Salts,” J. Appl. Electrochem., 18(1) (1988), pp. 80–85.

    CAS  Google Scholar 

  45. C.A.C. Sequeira, “Chronopotentiometric Study of Titanium in Molten NaCl + KCl + K2TiF6 J. Electroanal Chem. Interfacial Electrochem., 239(1–2) (1988), pp. 203–208.

    CAS  Google Scholar 

  46. S. Duan and X. Liu, “The Electrode Process of Chromium in LiCl-KCl Fused Salts,” op. cit. 19, pp. 530–535.

    Google Scholar 

  47. V.I. Shapoval, V.I. Taranenko and I.V. Zarutskii, “Electrochemical Behavior of the Titanium(III)/Titanium(II) System in Molten Chlorides,” Ukr. Khim. Zh., 53(4) (1987), pp. 370–374.

    CAS  Google Scholar 

  48. Z. Qiao and P. Taxil, “Electrochemical Reduction of Niobium Ions in Molten LiF-NaF,” J. Appl. Electrochem., 15(2) (1985), pp. 259–265.

    Google Scholar 

  49. L.P. Polyakova, B.I. Kosilo, E.G. Polyakov and A.B. Smimov, “Electrochemical Behavior of Tantalum in a CsCl-KCl-NaCl-TaCl5 Melt,” Elektrokhimiya, 24(7) (1988), pp. 892–897.

    CAS  Google Scholar 

  50. M. Kawakami et al., “Electrochemical Study on Titanium Reduction in Eutectic Lia-KCl Melt,” op. cit. 19, pp. 457–470.

    Google Scholar 

  51. J.L. Settle and Z. Nagy, “Metal Deposition-Dissolution in Molten Halides: On the Question of Measurability of Very Fast Electrode Reaction Rates,” J. Electrochem. Soc., 132(7) (1985), pp. 1619–1627.

    CAS  Google Scholar 

  52. K. Koyama and Y. Hashimoto, “Liquidus Surfaces of the KF-B2O3-Li2WO4-Na2WO4K2WO4 Systems,” J. Less-Common Met., 141(1) (1988), pp. 55–58.

    CAS  Google Scholar 

  53. G.J. Kipouros and S.N. Flengas, “On the Mechanism of the Production of Zirconium and Hafnium Metals by Fused Salt Electrolysis,” op. cit. 19, pp. 626–651.

    Google Scholar 

  54. M.V. Smirnov, A.B. Salyulev and V.Ya. Khudyakov, “Effect of the Ionic Composition of Electrolytes on Volatility of HfCl4 and the Potential of Metal Deposition on a Cathode,” Fiz. Khim. Elektrokhim. Redk. Met. Solevykh Rasplavakh, ed.P.T. Stangrit (Apatity, U.S.S.R.: Akad. Nauk SSSR, Kol'sk. Fil., 1984), pp. 3–8.

    Google Scholar 

  55. A.V. Kovalevskii and V.V. Toropov, “Current Efficiency in the Electrolysis of NaCl-K2ZrF6 and NaCl-KCl-K2ZrF6 Molten Salt Mixtures,” Izv. Vvssh. Uchebn. Zaved.. Tsvetn. Metall. (5) (1984), pp. 51–55.

  56. S.L. Gol'dshtein et al., “Experimental Static Model of Potentiostatic Cathodic Deposition of Titanium from a Chloride Melt,” Izv. Vvssh. Uchebn. Zaved.. Tsvetn. Metall. (2) (1985), pp. 31–36.

  57. G.J. Kipouros and D.R. Sadoway, “The Electrodeposition of Improved Molybdenum Coatings from Molten Salts by the Use of Electrolyte Additives,” J. Appl. Electrochem., 18(6) (1988), pp. 823–830.

    CAS  Google Scholar 

  58. V.I. Shapoval et al., “Specific Features of the Electroreduction of MoO3 Forms in the Presence of a Tungstate Melt,” Elektrokhimiva, 23(7) (1987), pp. 942–946.

    CAS  Google Scholar 

  59. K Koyama, Y. Hashimoto and K. Terawaki, “Smooth Electrodeposits of Molybdenum from KF-K2B4O7-K2MoO4 Fused Salt Melts,” J. Less-Common Met., 134(1) (1987), pp. 141–151.

    CAS  Google Scholar 

  60. T. Hatusika, M. Miyake and T. Suzuki, “Formation of Refractory Metal Films in Low Temperature Molten Salt Bath,” Kenkyu Hokoku—Asahi Garasu Kogyo Gijutsu Shoreikai, 49 (1986), pp. 289–293.

    CAS  Google Scholar 

  61. X. Gu, S. Duan and D. Inman, “Electroplating of Titanium in Molten LiCl-KCl Eutectic Containing Lower-Valent Titanium,” Xivou Jinshu,7(3) (1988), pp. 182–186.

    CAS  Google Scholar 

  62. A. Robin, J. De Lepinay and M.J. Barbier, “Electrolytic Coating of Titanium onto Iron and Nickel Electrodes in the Molten LiF + NaF + KF Eutectic,” J. Electroanal. Chem. Interfacial Electrochem., 230(1–2) (1987), pp. 125–141.

    CAS  Google Scholar 

  63. P. Taxil and J. Mahenc, “Formation of Corrosion-Resistant Layers by Electrodeposition of Refractory Metals or by Alloy Electrowinning in Molten Fluorides,” J. Appl. Electrochem., 17(2) (1987), pp. 261–269.

    CAS  Google Scholar 

  64. G.P. Capsimalis et al., “On the Electrodeposition and Characterization of Niobium from Fused Fluoride Electrolytes,” J. Appl. Electrochem., 17(2) (1987), pp. 253–260.

    CAS  Google Scholar 

  65. A.W. Berger, “Fused-Salt Electrodeposited Tantalum Coatings,” Chem.-Anlagen Verfahren (3) (1980), pp. 82–84.

  66. P. Los et al., “Tantalum Coatings Deposition from Fluoride Electrolytes,” Arch. Hutn., 29(4) (1984), pp. 515–527.

    CAS  Google Scholar 

  67. T. Vargas, R. Varma and A. Brown, “Electrodeposition of Microcrystalline Chromium from Fused Salts,” Molten Salts, ECS Symposium Vol. 87-7, ed. G. Mamantov et al. (Pennington, NJ: the Electrochemical Society, 1987), pp. 1018–1027.

    Google Scholar 

  68. A.M. Emsley and M.P. Hill, “The Corrosion and Deposition Performance of Molten Salt Electrodeposited Chromium Coatings,” J. Appl. Electrochem., 17(2) (1987), pp. 283–293.

    CAS  Google Scholar 

  69. T. Vargas and D. Inman, “Controlled Nucleation and Growth in Chromium Electroplating from LiCl-KCl Melt,” J. Appl. Electrochem., 17(2) (1987), pp. 270–282.

    CAS  Google Scholar 

  70. R.A. Bailey and T. Yoko, “High-Temperature Electroplating of Chromium from Molten FLINAK,” J. Appl. Electrochem., 16(5) (1986), pp. 737–744.

    CAS  Google Scholar 

  71. H. Yabe et al., “Electrodeposition of Tungsten and Tungsten Carbide from Molten Halide,” op. cit. 67, pp. 804–813.

    Google Scholar 

  72. Z.I. Valeev et al., “Electrodeposition of Molybdenum-Niobium Alloys from their Chloride Melt,” Elektrokhimiya, 24(1) (1988), pp. 59–63.

    CAS  Google Scholar 

  73. Z. Qiao and P. Taxil, “Electrochemical Surface Alloying on Nickel with Tantalum and Niobium in Molten Fluorides and Properties of Tantalum-Nickel and Niobium-Nickel Alloys,” finshu Xuebao, 23(2) (1987), pp. B76–B83.

    CAS  Google Scholar 

  74. KH. Stem and S.T. Gadomski, “Electrodeposition of Tantalum Carbide Coatings from Molten Salts,” J. Electrochem. Soc., 130(2) (1983), pp. 300–305.

    Google Scholar 

  75. K Matiasovsky, K Grjotheim and M. Makyta, “Electrolytic Deposition of Titanium Diboride—Possible Impact on Aluminum Electrolysis,” Metall (Berlin), 42(12) (1988), pp. 1196, 1198-1200.

    CAS  Google Scholar 

  76. D.W. Townsend and L.G. Boxall, “Titanium Diboride Coatings Prepared by Plasma Spraying and Electroplating,” Light Metals 1984 (Warrendale, PA: TMS, 1984), pp. 555–571.

    Google Scholar 

  77. W.S. Ricci, J.L. Wong, M. Levy and K.J. Bhansali, “Fused Salt Electrodeposited Titanium Boride Coatings on High Speed Steel Twist Drills,” Report MLT-TR-87-48 (1987); Chem. Abs., 109 (20), 174183w.

    Google Scholar 

  78. S. Nishikida and F. Matsuno, “Ceramic Coatings on Steels,” Japanese patent no. 62,112,782 A2 (May 23, 1987).

    Google Scholar 

  79. A. Bogacz et al., “Electrolytic Preparation of Titanium Boride and Lanthanum Boride,” Rudy Met. Niezelaz., 28(4) (1982), pp. 134–139.

    CAS  Google Scholar 

  80. M. Makyta, K. Matiasovsky and V.I. Taranenko, “Mechanism of the Cathode Process in the Electrochemical Synthesis of Titanium Boride in Molten Salts—I. The Synthesis in an All-Fluoride Electrolyte,” Electrochim. Acta, 34(6) (1989), pp. 861–866.

    CAS  Google Scholar 

  81. Kh.B. Kushkhov, I.A. Novoselova, D.G. Supatashvili and V.I. Shapoval, “Coelectroreduction of Fluorine Oxide Complexes of Tungsten and Carbon Dioxide in a Chloride-Fluoride Melt,” Elektrokhimiya, 26(1) (1990), pp. 48–51.

    CAS  Google Scholar 

  82. KH. Stem and M.L. Deanhardt, “Electroplating of Tungsten Carbide fromMolten Fluorides,” J. Electrochem. Soc., 132(8) (1985), pp. 1891–1895.

    Google Scholar 

  83. V.I. Shapoval, Kh.B. Kushkhov and I.A. Novoselova, “High Temperature Electrochemical Synthesis of Tungsten Carbide,” Zh. Prikl. Khim. (Leningrad), 58(5) (1985), pp. 1027–1030.

    CAS  Google Scholar 

  84. H. Yabe, K. Ema and Y. Ito, “The Effect of Silver Ion on Electrodeposition of Tungsten and Tungsten Carbide from Molten Chloride,” Electrochim. Acta, 35(1) (1990), pp. 187–189.

    CAS  Google Scholar 

  85. B. Hofman and H. Scholl, “Voltammetry of Mixed Tungsten-Titanium Carbide in Nonaqueous and Mixed Solvents,” Elektrokhimiva, 24(9) (1988), pp. 1264–1267.

    CAS  Google Scholar 

  86. J.M. Gomes and K. Uchida, “Electrolytic Preparation of Titanium and Zirconium Diborides Using a Molten, Sodium Salt Electrolyte,” U.S. patent no. 3,775,271 (November 27, 1973).

    Google Scholar 

  87. T. Arai and Y. Sugimoto, “Formation of Carbide or Boride Coatings of Group VB Metals or Chromium on Carbon Product Surface,” Japanese patent no. 52,029,500 (March 5, 1977).

    Google Scholar 

  88. N. Pefrescu et al., “Silicide Coatings on Molybdenum Obtained by Electrotransport and Diffusion from Molten Fluorides,” Rev. Roum. Chim., 18(11) (1973), pp. 1853–1858.

    Google Scholar 

  89. K.H. Stem and S.T. Gadomski, “Electrodeposition of Tantalum Carbide Coatings from Molten Salts,” Rev. Int. Hautes Temp. Refract., 24(2) (1987), pp. 71–83.

    Google Scholar 

  90. V.I. Shapoval, Kh.B. Kushkhov, V.V. Malyshev, P.V. Nazarenko and N.P. Baydan, “The Properties of Molybdenum Carbide Coatings on Different Materials,” Zashch. Met., 4 (1986), pp. 564–566.

    Google Scholar 

  91. G.A. Hope and R. Varma, “Molten Salt Deposition of Metal Matrix Composite Materials,” Aust. J. Chem., 41(8) (1988), pp. 1257–1259.

    CAS  Google Scholar 

  92. M.E. De Roy and J.P. Besse, “Synthesis of Single-Crystal Inorganic Compounds by Electrochemical Reduction in a Molten Medium,” Rev. Int. Hautes Temp. Refract.,24(2) (1987), pp. 71–83.

    Google Scholar 

  93. V.P. Yurkinskii et al., “Mechanism and Kinetics of the Electrochemical Oxidation of Molybdenum and Tungsten in Molten Alkali Metal Nitrates,” Zh.Prikl.Khim.(Leningrad), 57(3) (1984), pp. 695–698.

    CAS  Google Scholar 

  94. R.M. Rose and D.R. Sadoway, “Cryoelectrodeposition,” U.S. patent no. 4,517,253 (May 14, 1985).

    Google Scholar 

  95. D.R. Sadoway and R.M. Rose, “Cryoelectrosynthesis,” U.S. patent no. 4,971,663 (November 20, 1990).

    Google Scholar 

  96. Sony Corp., “Diaphragm for Fused Salt Electrolysis,” Japanese patent no. 56/5832 [81/5832] (Feb. 6, 1981).

    Google Scholar 

  97. E. Chassaing, F. Basile and G. Lorthioir, “Fused-Salt Electrolysis for Production of Titanium Metal—Present State and Future Developments,” Titanium '80: Science and Technology, ed. H. Kimura and O. Izumi (Warrendale, PA: TMS-AIME, 1980), pp. 1963–1967.

    Google Scholar 

  98. G. Cobel, J. Fisher and L.E. Snyder, “Electrowinning of Titanium from Titanium Tetrachloride: Pilot Plant Experience and Production Plant Projections,” Titanium '80: Science and Technology, ed. H. Kimura and O. Izumi (Warrendale, PA: TMS-AIME, 1980), pp. 1969–1976.

    Google Scholar 

  99. M.V. Ginatta, “Industrial Plant for the Production of Electrolytic Titanium, Ginatta Technology,” report RT 88-03-077, Ginatta S.A., Torino, Italy (March 1988).

    Google Scholar 

  100. M. Onozawa, “Preparation of Titanium or Its Alloy by Fused Salt Electrolysis,” Japanese patent no. 63/118089 A2 [88/118089] (May 23, 1988).

    Google Scholar 

  101. D.R. Sadoway, “Metallurgical Electrochemistry in Nonaqueous Media,” Proc. Elliott Symposium on Chemical Process Metallurgy, ed. L. Kuhn et al. (Warrendale, PA: Iron & Steel Society, 1991), pp. 189–196.

    Google Scholar 

  102. G.P. Dovgaya et al., “Effect of the Electrolyte Composition on the Properties of Electrolytic Titanium Powders,” Poroshk. Metall (Kiev), no. 10 (1987), pp. 6–10.

    Google Scholar 

  103. A.B. Suchkov, A.S. Vorob'eva, V.N. Kryzhova, L.V. Ryumina, A.G. Kaganov, I.V. Chikunova and B.F. Kovalev, “Effect of Electrolyte Composition and Current Density on the Particle Size of Electrolytic Powders,” Poroshk. Metall. (Kiev) (6) (1987), pp. 1–4.

  104. S.L. Gol'dshtein et al., “Effect of Concentration on the Formation of Fine Titanium Powders by Potentiostatic Deposition from Chloride Melts,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (2) (1986), pp. 58–61.

  105. C.F. Rerat, “Tantalum and Niobium Powder,” U.S. patent no. 4,149,876 (April 17, 1979).

    Google Scholar 

  106. V.A. Pavlovskii and V.A. Reznichenko, “Electrolytic Method for Manufacturing Coarse Tungsten Powder,” Poroshk. Metall. (Kiev) (11) (1986), pp. 1–3.

  107. M. Armand, “Process for Elaboration of Transition etal Powders in Molten Salt Baths,” French patent no. 2,592,664 A1 (July 10, 1987).

    Google Scholar 

  108. KA. Kaliev, A.N. Baraboshkin and S.M. Zakhar'yash, “Formation of Metastable Phases during the Electrolysis of Na2WO4-Li2WO4-WO3 System Melts,” Elektrokhimiva, 20(3) (1984), pp. 328–331.

    CAS  Google Scholar 

  109. A.N. Baraboshkin et al., “Preferred Orientation of the Growth of Metals Electroplated from Fused Salts. Relation Between Crystal Habit and Direction of the Orientation Axis,” Elektrokhimiva, 14(1) (1978), pp. 9–15.

    CAS  Google Scholar 

  110. V.I. Shapoval et al., “Deposition of Molybdenum Carbide on the Surface of Diamonds by Electrolysis of Ionic Melts,” Poroshk. Metall., 7 (1986), pp. 43–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author's Note

In this article, the notation for the periodic table of the elements follows recent recommendations by the International Union of Pure and Applied Chemistry (IUPAC) and the American Chemical Society (ACS) nomenclature committees. To eliminate ambiguity, A and B designations are avoided. Groups IA and IIA are Groups 1 and 2, respectively, the d-transition elements are Groups 3 through 12, and the p-block elements are Groups 13 through 18. In the last digit, the former Roman-numeral designation is preserved (e.g., IV becomes 4 and 14. Thus, titanium, zirconium and hafnium become Group 4, and C, Si, Ge, Sn and Pb become Group 14).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadoway, D.R. The eelectrochemical processing of refractory metals. JOM 43, 15–19 (1991). https://doi.org/10.1007/BF03220614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220614

Keywords

Navigation