Skip to main content
Log in

Management of Angina Pectoris

The Role of Spinal Cord Stimulation

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Progress in prevention as well as drug and interventional therapy has improved the prognosis of patients with cardiovascular disorders. Many patients at risk have advanced coronary artery disease (CAD), have had multiple coronary interventions, and present with significant co-morbidity. Despite adequate risk factor modulation and often several revascularization procedures, some of these patients still have refractory angina pectoris. Apart from advanced CAD and insufficient collateralization, the cause is often endothelial dysfunction. For this situation, one treatment option is neuromodulation. Controlled studies suggest that, in patients with chronic refractory angina pectoris, spinal cord stimulation (SCS) provides a relief from symptoms equivalent to that provided by surgical therapy, but with fewer complications and lower rehospitalization rates. SCS may result in significant long-term pain relief with improved quality of life. In patients with refractory angina undergoing SCS, some studies have shown not only a symptomatic improvement, but also a decrease in myocardial ischemia and an increase in coronary blood flow. Discussion is ongoing as to whether this is a direct effect on parasympathetic vascodilation or merely a secondary phenomenon resulting from increased physical activity following an improvement in clinical symptoms. Results from nuclear medical studies have sparked discussion about improved endothelial function and increased collateralization. SCS is a safe treatment option for patients with refractory angina pectoris, and its long-term effects are evident. It is a procedure without significant complications that is easy to tolerate. SCS does not interact with pacemakers, provided that strict bipolar right-ventricular sensing is used. Use in patients with implanted cardioverter defibrillators is under discussion. Individual testing is mandatory in order to assess optimal safety in each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campeau L. Grading of angina pectoris. Circulation 1976; 54: 522–3

    PubMed  CAS  Google Scholar 

  2. Mannheimer C, Camici P, Chester MR. The problem of chronic refractory angina. Eur Heart J 2002; 23: 355–70

    Article  PubMed  CAS  Google Scholar 

  3. Leschke M, Schoebel FC, Mecklenbeck W. Long-term intermittent urokinase therapy in patients with end-stage coronary artery disease and refractory angina pectoris: a randomized dose-response trial. J Am Coll Cardiol 1996; 27: 575–84

    Article  PubMed  CAS  Google Scholar 

  4. Burkhoff D, Schmidt S, Schulman SP. Transmyocardial laser revascularisation compared with continued medical therapy for treatment of refractory angina pectoris: a prospective randomised trial. Lancet 1999; 354: 885–90

    Article  PubMed  CAS  Google Scholar 

  5. Bridges CR, Horvath KA, Nugent WC. The Society of Thoracic Surgeons practice guideline series: transmyocardial laser revascularization. Ann Thorac Surg 2004; 77: 1494–502

    Article  PubMed  Google Scholar 

  6. Oesterle SN, Sanborn TA, Resar J. Percutaneous transmyocardial laser revascularisation for severe angina: the PACIFIC randomised trial. Lancet 2000; 356: 1705–10

    Article  PubMed  CAS  Google Scholar 

  7. Stys TP, Lawson EW, Hui JCK. Effects of enhanced external counterpulsation on stress radionuclide coronary perfusion and exercise capacity in chronic stable angina pectoris. Am J Cardiol 2002; 89: 822–4

    Article  PubMed  Google Scholar 

  8. Sinvhal RM, Gowda RM, Khan IA. Enhanced external counterpulsation for refractory angina pectoris. Heart 2003; 89: 830–3

    Article  PubMed  CAS  Google Scholar 

  9. Oesterle SN, Reifart N, Haupftmann E. Percutaneous in situ coronary venous arterialisation report of the first human catheter-based coronary artery bypass. Circulation 2001; 103: 2539–43

    Article  PubMed  CAS  Google Scholar 

  10. Murphy DF, Giles K. Dorsal column stimulation for pain relief from intractable angina pectoris. Pain 1987; 28: 365–8

    Article  PubMed  CAS  Google Scholar 

  11. Mannheimer C, Eliasson T, Andersson B. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action. BMJ 1993; 307: 477–80

    Article  PubMed  CAS  Google Scholar 

  12. Eliasson T, Jern S, Augustinsson LE, et al. Safety aspects of spinal cord stimulation in servere angina pectoris. Coron Artery Dis 1994; 5: 845–50

    PubMed  CAS  Google Scholar 

  13. de Jongste MJL, Nagelkerke D, Hooyschnuur CM, et al. Stimulation characteristics, complications, and efficacy of spinal cord stimulation systems in patients with refractory angina. Pacing Clin Electrophysiol 1994 Nov; 17 (11 Pt 1): 1751–60

    Article  PubMed  Google Scholar 

  14. Oosterga M, Vaarwerk ten IAM, de Jongste MJL. Spinal cord stimulation in refractory angina: clinical results and mechanisms. Z Kardiol 1997; 86 (1 Suppl.): 107S–113S

    Google Scholar 

  15. Hautvast RWM, de Jongste MJL, Staal MJS. Spinal cord stimulation in chronic intractable angina pectoris: a randomised, controlled efficacy study. Am Heart J 1998; 136: 1114–20

    Article  PubMed  CAS  Google Scholar 

  16. Greco S, Auriti A, Fiume D. Spinal cord stimulation for the treatment of refractory angina pectoris: a two-year follow-up. Pacing Clin Electrophysiol 1999; 22 (Pt 1): 26–32

    Article  PubMed  CAS  Google Scholar 

  17. Di Pede F, Lanza GA, Zuin G. Immediate and long-term clinical outcome after spinal cord stimulation for refractory stable angina pectoris. Am J Cardiol 2003; 91: 951–5

    Article  PubMed  Google Scholar 

  18. Mannheimer C, Eliasson T, Augustinsson LE. Electrical stimulation versus coronary artery bypass surgery in severe angina pectoris. The ESBY study. Circulation 1998; 97: 1157–63

    Article  CAS  Google Scholar 

  19. Erke O, Eliasson T, Norrsell H. Long-term effects of spinal cord stimulation and coronary artery bypass grafting on quality of life and survival in the ESBY study. Eur Heart J 2002; 23: 1938–45

    Article  Google Scholar 

  20. Kemp HG, Kronmal RA, Vliestra RE. Seven year survival of patients with normal or near normal coronary angiograms: a CASS registry study. J Am Coll Cardiol 1986; 7: 476–83

    Article  Google Scholar 

  21. Opherek D, Schuler G, Watterauer K. Four-year follow up study in patients with angina pectoris and normal coronary angiograms (syndrome X). Circulation 1989; 80: 1610–6

    Article  Google Scholar 

  22. Patti G, Pasceri V, Melfi R. Impaired flow-mediated dilation and risk of restenosis in patients undergoing coronary stent implantation. Circulation 2005; 111:70–5

    Article  PubMed  Google Scholar 

  23. Pijls NHJ, De Bruyne B, Smith L. Coronary thermodilution to assess flow reserve. Circulation 2002; 105: 2482–6

    Article  PubMed  Google Scholar 

  24. Pijls NHJ, Klauss V, Siebert U. Coronary pressures measurement after stenting predicts adverse events at follow-up. Circulation 2002; 105:2950–4

    Article  PubMed  Google Scholar 

  25. Fox K, Alonso Garcia MA, Ardissino D, et al., for the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. ESC guidelines for the management of stable angina pectoris: executive summary. Eur Heart J 2006; 27: 1341–81

    Article  PubMed  Google Scholar 

  26. Lee TH, Cannon CP. Approach to the patient with chest pain. In: Zipes DP, Libby P, Bonov RO, et al., editors. Braunwald’s heart disease. Philadelphia (PA): Elsevier Saunders, 2005: 1129–39

    Google Scholar 

  27. Hambrecht R, Walther C, Möbius-Winkler S, et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease. Circulation 2004; 109: 1371–78

    Article  PubMed  Google Scholar 

  28. Belardinelli R, Georgiou D, Ginzton L. Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy. Circulation 1998; 97: 553–61

    Article  PubMed  CAS  Google Scholar 

  29. Bolser DC, Chandler MJ, Garrison DW. Effects of intracardiac bradykinin and sapsaicin on spinal and spinoreticular neurons. Am J Physiol 1989; 257: 1543–50

    Google Scholar 

  30. Foreman RD, Ohata CA. Effects of coronary artery occlusion on thoracic spinal neurons receiving viscerosomatic inputs. Am J Physiol 1980; 238: 667–74

    Google Scholar 

  31. Selzer M, Spencer WA. Interactions between visceral and cutaneous afferents in the spinal cord: reciprocal primary afferent fiber depolarization. Brain Res 1969; 14: 349–66

    Article  PubMed  CAS  Google Scholar 

  32. Sanderson JE, Brooksby P, Waterhouse D. Epidural spinal electrical stimulation for severe angina pectoris. Eur Heart J 1992; 13: 628–33

    PubMed  CAS  Google Scholar 

  33. Latif OA, Nedeljkovic SS, Stevenson LW. Spinal cord stimulation for chronic intractable angina pectoris: a unified theory on its mechanism. Clin Cardiol 2001; 24: 533–41

    Article  PubMed  CAS  Google Scholar 

  34. Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965; 150:971–9

    Article  PubMed  CAS  Google Scholar 

  35. Cui JG, O’Connor WT, Ungerstedt U, et al. Spinal cord stimulation attenuates augmented dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism. Pain 1997; 87: 87–95

    Article  Google Scholar 

  36. Cui JG, Meyerson BA, Sollevi A, et al. Effect of spinal cord stimulation on tactile hypersensitivity in mononeuropathic rats is potentiated by simultaneous GABAB and adenosine receptor activation. Neurosci Lett 1989; 247: 183–7

    Article  Google Scholar 

  37. Oldroyd KG, Harvey K, Gray CE, et al. Beta-endorphin release in patients after spontaneous and provoked acute myocardial ischaemia. Br Heart J 1992; 67: 230–5

    Article  PubMed  CAS  Google Scholar 

  38. Eliasson T, Mannheimer C, Waagstein F, et al. Myocardial turnover of endogenous opioids and calcitonin-gene-related peptide in the human heart and the effects of spinal cord stimulation on pacing-induced angina pectoris. Cardiology 1998; 89: 170–7

    Article  PubMed  CAS  Google Scholar 

  39. Mannheimer C, Carlsson CA, Emanuelsson H, et al. The effects of transcutaneous electrical nerve stimulation in patients with severe angina pectoris. Circulation 1985; 527: 11–6

    Google Scholar 

  40. Norsell H, Elissson T, Mannheimer C, et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover. Eur Heart J 1997; 18: 1890–6

    Article  Google Scholar 

  41. George MS, Sackeim HA, Rush AJ, et al. Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatr 2000; 47: 287–95

    Article  CAS  Google Scholar 

  42. Elser M, Jennings G, Korner B, et al. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 1984; 247: E21–8

    Google Scholar 

  43. Foreman RD, Linderoth B, Ardell JF, et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res 2000; 47: 367–75

    Article  PubMed  CAS  Google Scholar 

  44. Olgin JE, Takahashi T, Wilson E, et al. Effects of thoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and artrioventricular nodes. J Cardiovasc Electrophysiol 2002; 13: 475–81

    Article  PubMed  Google Scholar 

  45. Moore R, Groves D, Nolan J, et al. Altered short term heart rate variability with spinal cord stimulation in chronic refractory angina: evidence for the presence of procedure related cardiac sympathetic blockade. Heart 2004; 90:211–2

    Article  PubMed  CAS  Google Scholar 

  46. Emanuelsson HC, Mannheimer F, Waagstein C, et al. Catecholamine metabolism during pacing-induced angina pectoris and the effect of transcutaneous electrical nerve stimulation. Am Heart J 1987; 114: 1360–6

    Article  PubMed  CAS  Google Scholar 

  47. Strauer BE. Ventricular function and coronary hemodynamics in hypertensive heart disease. Am J Cardiol 1979; 44: 999–1018

    Article  PubMed  CAS  Google Scholar 

  48. Haustvast RWM, Ter Horst GJ, DeJong BM, et al. Relative changes in regional cerebral blood flow during spinal cord stimulation in patients with refractory angina pectoris. European Journal of Neuroscience 1997; 9: 1178–83

    Article  Google Scholar 

  49. Zonenshayn M, Mogilner AY, Rezai AR. Neurostimulation and functional brain imaging. Neurol Res 2000; 22: 318–25

    PubMed  CAS  Google Scholar 

  50. Rosen SD, Paulesu E, Firth CD, et al. Central nervous pathways mediating angina pectoris. Lancet 1994; 344: 147–50

    Article  PubMed  CAS  Google Scholar 

  51. DeVries J, DeJongste MJL, Zijlstra F, et al. Long-term effects of electrical neurostimulation in patients with unstable angina. Refractory to conventional therapies. Neuromodulation 2007; 10: 345–8

    Article  Google Scholar 

  52. Andersen C, Enggard TP, Scherer C, et al. Spinal cord stimulation has a proven benefit on pain and quality of life in patients with angina pectoris when less invasive therapies have failed. Neuromodulation 2006; 9: 314–9

    Article  PubMed  Google Scholar 

  53. Sanderson JE, Ibrahim B, Waterhouse D, et al. Spinal electrical stimulation for intractable angina—long-term clinical outcome and safety. Eur Heart J 1994; 15: 810–4

    PubMed  CAS  Google Scholar 

  54. Eddicks S, Maier-Hauff K, Schenk M, et al. Thoracic spinal cord stimulation improves functional status and relieves symptoms in patients with refractory angina pectoris: the first placebo-controlled randomised study. Heart 2007; 93: 585–90

    Article  PubMed  Google Scholar 

  55. Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20 year literature review. J Neurosurg 2004; 100: 254–67

    PubMed  Google Scholar 

  56. Schoebel FC, Leschke M, Strauer BE. Therapierefraktäre angina pectoris. Dtsch Med Wschr 1995; 120: 301–7

    Article  PubMed  CAS  Google Scholar 

  57. Chauhan A, Mullins PA, Thuraisingham G, et al. Effects of transcutaneous electrical nerve stimulation in coronary blood flow. Circulation 1994; 89: 694–702

    Article  PubMed  CAS  Google Scholar 

  58. Kujacic V, Eliasson T, Mannheimer C, et al. Assessment of the influence of spinal cord stimulation on left ventricular function in patients with server angina pectoris: an echocardiographic study. Eur Heart J 1993; 14: 1238–44

    Article  PubMed  CAS  Google Scholar 

  59. Norrsell H, Eliasson T, Albertsson P, et al. Effects of spinal cord stimulation on coronary blood flow velocity. Coron Artery Dis 1998; 9: 273–8

    Article  PubMed  CAS  Google Scholar 

  60. Diedrichs H, Weber M, Koulousakis A, et al. Improved myocardial blood flow in patients with intractable angina pectoris through spinal cord stimulation. J Nucl Cardiol 2004; 11 Suppl. 4: 25S

    Article  Google Scholar 

  61. De Landsheere C, Mannheimer C, Habets A, et al. Effect of spinal cord stimulation on regional myocardial perfusion assessed by positron emission tomography. Am J Cardio 1992; 69: 1143–9

    Article  Google Scholar 

  62. Hautvast RW, Blanksma PK, DeJongste MJL, et al. Effects of spinal cord stimulation on myocardial blood flow assessed by positron emission tomography in patients with refractory angina pectoris. Am J Cardiol 1996; 77: 462–7

    Article  PubMed  CAS  Google Scholar 

  63. Wielepp JPP, Eckert S, Dongas A, et al. Effect of spinal cord stimulation on myocardial blood flow in patients with refractory angina pectoris. J Nucl Cardiol 2005; 12 (Suppl.): 64S

    Google Scholar 

  64. Fricke E, Eckert S, Dongas A, et al. Myocardial perfusion after one year of spinal cord stimulation in patients with refractory angina. Nuklearmedizin. In press

  65. Eliasson T, Albertsson P, Hardhammar P, et al. Spinal cord stimulation in angina pectoris with normal coronary arteriograms. Coron Artery Dis 1993; 4: 819–27

    Article  PubMed  CAS  Google Scholar 

  66. Kaski JC, Russo G. Microvascular angina patients with syndrom X. Z Kardiol 2000; 89 Suppl. 9: 121–5

    Article  Google Scholar 

  67. Lanza GA, Sestito A, Sgueglia GA, et al. Effect of spinal cord stimulation on spontaneous and stress-induced angina and 'schemia-like’ ST-segment depression in patients with cardiac syndrome X. Eur Heart J 2005; 26: 983–9

    Article  PubMed  Google Scholar 

  68. Lanza GA. Cardiac syndrome X: a critical overview and future perspectives. Heart 2007; 93: 159–66

    Article  PubMed  CAS  Google Scholar 

  69. Jessurun GAJ, Hautvast RWH, Tio RA, et al. Electrical neuromodulation improves myocardial perfusion and ameliorates refractory angina pectoris in patients with syndrome X: fad or future? Eur J of Pain 2003; 7: 507–12

    Article  CAS  Google Scholar 

  70. DeVries J, DeJongste MJL, Versteegen GJ, et al. Personality: predictor of neurostimulation outcomes in patients with chest pain and normal coronary artery. Neuromodulation 2006; 9: 123–5

    Article  Google Scholar 

  71. DeJongste MJL, Haaksma J, Hautvast RWM, et al. Effects of spinal cord stimulation on myocardial ischaemia during daily life in patients with severe coronary artery disease. Br Heart J 1994; 71: 413–8

    Article  CAS  Google Scholar 

  72. Gruccu G, Aziz TZ, Garcia-Larrea L, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neuro 2007; 10: 1331–50

    Google Scholar 

  73. Loeser JD. Evidence-based medicine and neuromodulation. Neuromodulation 2008; 11: 151–5

    Article  PubMed  Google Scholar 

  74. Andersen C, Hole P, Oxhoj H. Does pain relief with spinal cord stimulation conceal myocardial infarction? Br Heart J 1994; 71: 419–21

    Article  PubMed  CAS  Google Scholar 

  75. Kumar K, Hunter G, Demeria D. Spinal cord stimulation in treatment of chronic benign pain: challenges in treatment planning and present status, a 22-year experience. Neurosurgery 2006; 58: 481–96

    PubMed  Google Scholar 

  76. Eckert S, Theres H, Eddicks S. Wie sicher ist die spinal cord stimulation zur Behandlung der therapierefraktären angina pectoris. Clin Res Cardiol 2007; 96 Suppl. 1:523

    Google Scholar 

  77. TenVaarwerk IA, Jessurun GA, DeJongste MJL, et al. Clinical outcome of patients treated with spinal cord stimulation for therapeutically refractory angina pectoris. Heart 1999; 82: 82–8

    PubMed  CAS  Google Scholar 

  78. Erke O, Börjesson M, Edvardsson N, et al. Feasibility of spinal cord stimulation in angina pectoris with chronic pacemaker treatment for cardiac arrhythmias. Pace 2003; 26: 2134–41

    Article  Google Scholar 

  79. Andersen C, Oxhoj H, Arnsbo P. Management of spinal cord stimulation in patients with cardiac pacemakers. Pace 1990; 13: 574–7

    Article  PubMed  CAS  Google Scholar 

  80. Romano M, Zucco F, Baldini MR, et al. Technical and clinical problems in patients with simultaneous implantation of a cardiac pacemaker and a spinal cord stimulator. Pace 1993; 16: 1639–44

    Article  PubMed  CAS  Google Scholar 

  81. Iyer R, Gnanadurai TV, Forsey P. Mangement of cardiac pacemaker in a patient with spinal cord stimulator implant. Pain 1998; 74: 333–5

    Article  PubMed  CAS  Google Scholar 

  82. Kumar K, Buchser E, Linderoth B, et al. Avoiding complication from spinal cord stimulation: practical recommendations from an international panel of experts. Neuromodulation 2007; 10: 24–33

    Article  PubMed  Google Scholar 

  83. Pinski SL, Trohman RG. Interference in implanted cardiac devices. Pace 2002; 25: 1367–81

    Article  PubMed  Google Scholar 

  84. Kosharskyy B, Rozen D. Feasibility of spinal cord stimulation in a patient with cardiac pacemaker. Pain Physician 2006; 9: 249–52

    PubMed  Google Scholar 

  85. Schimpf R, Wolpert C, Herwig S, et al. Potential device interaction of a dual chamber implantable cardioverter defibrillator in a patient with continuous spinal cord stimulation. Europace 2003; 5: 397–402

    Article  PubMed  CAS  Google Scholar 

  86. Ferrero P, Grimaldi R, Massa R, et al. Spinal cord stimulation for refractory angina in a patient implanted with a cardioverter defibrillator. Pacing Clin Electrophysiol 2007; 30: 143–6

    Article  PubMed  Google Scholar 

  87. Eckert S, Dongas A, Güldner H, et al. Immediate and long-term clinical outcome after spinal cord stimulation for refractory stable angina pectoris in patients with chronic pacemaker- and ICD-treatment. Eur Heart J 2006; 27 Suppl. 6: 463S

    Google Scholar 

  88. Theres H, Eckert S, Eddicks S. Spinal cord stimulation (SCS) zur Behandlung der refraktären angina pectoris in Deutschland — Ergebnisse nach 12 Monaten Verlauf im Rahmen des Deutschen SCS Registers. Clin Res Cardiol 2007; 96 Suppl. 1: 522

    Article  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, S., Horstkotte, D. Management of Angina Pectoris. Am J Cardiovasc Drugs 9, 16–28 (2009). https://doi.org/10.1007/BF03256592

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256592

Keywords

Navigation