Skip to main content
Log in

A Consideration of Allowable Equivalent Stresses for Fatigue Design of Welded Joints According to the Notch Stress Concept with the Reference Radii rref = 1.00 and 0.05 mm

  • Peer-Reviewed Section
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In the literature, allowable stresses (FAT-values) for the fatigue design of welded joints are established according to the notch stress concept with the reference radii rref = 1.00 mm for thick connections (t ≥ 5 mm) and 0.05 mm for thin connections (t < 5 mm). However, it is not clear for which strength hypothesis they are valid. As local equivalent stresses may be calculated by the principal stress or von Mises hypotheses, it is necessary to distinguish between the applied hypotheses. The FAT-values according to the principal stress and von Mises hypotheses are compiled for steel, aluminium and magnesium for the reference radii rref = 1.00 and 0.05 mm. The allowable stresses are derived from normal as well as from shear stresses. However, the values derived from pure normal loading (axial or bending) and from pure torsion are not compatible when the principle stress or the von Mises hypotheses are applied. Therefore, in case of biaxial loading, the stated incompatibility between the values obtained from different loading modes should be overcome by the Gough-Pollard relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sonsino C.M.: Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses, International Journal of Fatigue, 1995, vol. 17, 1, pp. 55–70.

    Article  CAS  Google Scholar 

  2. Sonsino C.M., Küppers M., Eibl M., Zhang G.: Fatigue strength of laser beam welded thin steel structures under multiaxial loading, International Journal of Fatigue, 2006, vol. 28, 5–6, pp. 657–662.

    Article  CAS  Google Scholar 

  3. Radaj D., Sonsino C.M., Fricke W.: Fatigue assessment of welded joints by local approaches, Woodhead Publishing, Cambridge, 2006, 2nd extended Edition.

  4. Hobbacher A.: Recommendations for fatigue design of welded joints and components, Doc. IIW-1823–07, update July 2008.

  5. Morgenstern C.: Kerbgrundkonzepte für die schwingfeste Auslegung von Aluminiumschweißverbindungen am Beispiel der naturharten Legierung AlMg4, 5Mn (AW-5083) und der warmausgehärteten Legierung AlMgSi1 T6 (AW-6082 T6) [Notch stress concepts for the fatigue design of welded aluminium joints of the naturally aged alloy AlMg4.5 Mn (AW-5083) and the artificially aged AlMgSi1 T6 (AW-6082 T6)] Dissertation TU Darmstadt, 2005, LBF-Report no. FB-231, 2006 (in German).

  6. Morgenstern C., Sonsino C.M., Hobbacher A., Sorbo F.: Fatigue design of aluminium welded joints by the local stress concept with the fictitious notch radius of rref = 1 mm, International Journal of Fatigue, 2006, vol. 28, 8, pp. 881–890.

    Article  CAS  Google Scholar 

  7. Grzesiuk J.G.: Einfluss der Nahtvorbereitung und Nahtausführung auf die Schwingfestigkeit hochwertiger Aluminiumkonstruktionen (Influence of the weld preparation and performance on the fatigue strength of high-quality aluminium structures), Dissertation, TU Clausthal, 2004 (in German).

  8. Karakas Ö., Morgenstern C., Sonsino C.M., Hanselka H., Vogt H.M., Dilger K.: Grundlagen für die praktische Anwendung des Kerbspannungskonzeptes zur Schwing-festigkeitsbewertung von geschweißten Bauteilen aus Magnesiumknet- legierungen (Basics for the practical application of the notch stress concept for the fatigue strength assessment of welded wrought magnesium parts), Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt, Report no. FB-232, 2007, Institut für Füge- und Schweißtechnik ifs, TU Braunschweig, ifs-Schriftenreihe no. 17, 2007 (in German).

  9. Karakas Ö., Morgenstern C., Sonsino C.M.: Fatigue design of welded joints from the wrought magnesium alloy AZ31 by the local stress concept with the fictitious notch radii of rf =1.0 and 0.05 mm, International Journal of Fatigue, 2008, vol. 30, 12, pp. 2210–2219.

    Article  CAS  Google Scholar 

  10. Sonsino C.M., Hanselka H., Karakas Ö., Gülsöz A., Vogt. M., Dilger K.: Fatigue design values for welded joints of the wrought magnesium alloy AZ31 (ISO-MgAl3Zn1) according to the nominal, structural and notch stress concepts in comparison to welded steel and aluminium connections, Doc. IIW-1857-07 (ex-doc. XIII-2157r1-07/ XV-1249r1–07), Welding in the World, 2008, vol. 52, no. 5/6, pp. 79–94.

    Article  CAS  Google Scholar 

  11. Eibl M.: Berechnung der Schwingfestigkeit laserstrahlgeschweißter Feinbleche mit lokalen Konzepten (Assessment of the fatigue strength of laser beam welded thin sheets by local concepts) Dissertation TU Darmstadt, 2003, LBF-Report no. FB-224, 2003 (in German).

  12. Eibl M., Sonsino C.M., Kaufmann A., Zhang G.: Fatigue assessment of laser welded thin sheet aluminium, International Journal of Fatigue, 2003, vol. 25, 8, pp. 719–731.

    Article  CAS  Google Scholar 

  13. Olivier R., Köttgen V.B., Seeger T.: Schwingfestigkeitsnachweis für Schweissverbindungen auf der Grundlage örtlicher Beanspruchungen -Schweißverbindungen I (Fatigue strength proof for welded joints on basis of local stresses -Welded joints I) Forschungskuratorium Maschinenbau, (FKM), Frankfurt, Forschungsheft 143, 1998 (in German).

    Google Scholar 

  14. Olivier R., Köttgen V.B., Seeger T.: Untersuchung zur Einbindung eines neuerartigen Zeit- und Dauerfestigkeitsnachweises von Schweißverbindungen in Regelwerken-Schweissverbindungen II (Investigations for integrating of a new fatigue strength proof of welded joints in design codes -welded joints II), Forschungskuratorium Maschinenbau (FKM), Frankfurt, Report no. 180, 1994 (in German).

  15. Küppers M., Sonsino C.M.: Assessment of fatigue behaviour of welded aluminium joints under multiaxial spectrum loading by a critical plane approach, International Journal of Fatigue, 2006, vol. 28, 5–6, pp. 540–546.

    Article  Google Scholar 

  16. Küppers M.: Betriebsfestigkeit von Aluminiumschweißverbindungen unter mehrachsigen Spannungs- zuständen mit konstanten und veränderlichen Hauptspannungsrichtungen (Structural durability of aluminium welded joints under multiaxial stress states with constant and changing principle stress directions) Dissertation, TU Darmstadt, 2007, LBF-Report no. FB-233, 2007 (in German).

  17. Seeger T., Olivier R.: Ertragbare und zulässige Schubspannungen schwingbeanspruchter Schweißverbindungen (Bearable and allowable shear stresses of fatigue loaded welded joints), Stahlbau, 1987, vol. 56, 8, pp. 231–238 (in German).

    Google Scholar 

  18. Siljander A., Kurath P., Lawrence F.V.Jr.: Proportional and non-proportional multiaxial fatigue of tube to plate weldments, University of Illinois at Urbana-Champaign, Urbana, Illinois, Report of the Welding Research Council, 1989.

  19. Witt M., Yousefi F., Zenner H.: Fatigue strength of welded joints under multiaxial loading: Comparison between experiments and calculations, In: Multiaxial fatigue and deformation: Testing and prediction, ASTM STP 1387, 2000, pp. 191–210.

  20. Sonsino C.M.: Fatigue strength of welded components under complex elasto-plastic multiaxial deformations, Report no. EUR 16024 DE, 1997, Luxembourg.

  21. Neuber H.: Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen (About the consideration of the stress concentration in strength assessments), Konstruktion, 1968, 20, 7, pp. 245–251 (in German).

    Google Scholar 

  22. Radaj D.: Design and analysis of fatigue resistant welded structures, Abington Publishing, Cambridge, 1990.

    Book  Google Scholar 

  23. Irwin G.R.: Fracture, In: S. Flügge, Handbuch der Physik, Band IV, Elastizität und Plastizität, Springer Verlag, Berlin, 1958, pp. 551–590.

    Google Scholar 

  24. Zhang G., Sonsino C.M.: Ein Kerbspannungskonzept für die schwingfeste Bemessung von rissähnlichen Schweißnähten aus Aluminiumlegierungen (A notch stress concept for the fatigue design of aluminium welds with high stress concentration), DVM-Report no. 132, 2005, pp. 61–72 (in German).

  25. Sheppard S.D., Strange M.: Fatigue life estimation in resistance spot welds: Initiation and early growth phase fatigue and fracture of engineering, Materials and Structures, 1992, vol. 15, 6, pp. 531–549.

    CAS  Google Scholar 

  26. Zhang G., Richter B.: A new approach to the numerical fatigue-life prediction of spot-welded structures fatigue and fracture of engineering, Materials and Structures, 2000, vol. 23, 6, pp. 499–508.

    Google Scholar 

  27. Fricke W.: Guideline for the fatigue assessment by notch stress analysis for welded structures, IIW-Doc. no. XIII-2240r1-08/XV-1289r1–08, 2008.

  28. Zenner H., Simbürgen A., Liu J.: On the fatigue limit of ductile metals under complex multiaxial loading, International Journal of Fatigue, 2000, vol. 22, 2, pp. 137–145.

    Article  Google Scholar 

  29. Hänel B., Haibach E., Seeger T., Wirthen G., Zenner H.: Rechnerischer Festigkeitsnachweis für Maschinenbauteile (Numerical proof of strength of mechanical parts), FKM-Richtlinie, VDMA Verlag, Frankfurt, 2002 (in German).

    Google Scholar 

  30. Seeger T., Amstutz H.: Betriebsfestigkeitsnachweis für Schweißverbindungen auf der Grundlage örtlicher Konzepte (Proof of structural durability of welded joints on basis of local concepts), In: DVS-Report no. 187, 1997, pp. 190–207 (in German).

  31. Gough H.J., Pollard H.V.: The strength of metals under combined alternating stresses, Proceedings of the Institution of Mechanical Engineers, 1935, 131, pp. 1–101.

    Article  Google Scholar 

  32. Sonsino C.M., Wallmichrath M., Küppers M.: Assessment of multiaxial fatigue test results on welded joints by application of the IIW-formula and modifications, IIW-Doc. XIII-2046–05, 2005, Prague.

  33. Sonsino C.M., Fricke W.: Some remarks for improving the assessment of multiaxial stress states and multiaxial spectrum loading in the IIW-fatigue design recommendations, IIW-Doc. XIII-2128-06/XV-1222–06, 2006, Quebec.

  34. Sonsino C.M., Wiebesiek J.: Assessment of multiaxial spectrum loading of welded steel and aluminium joints by modified equivalent stress and Gough-Pollard algorithms, IIW-Doc. XIII-2158r1-07/XV-1250r1–07, 2007, Cavtat.

  35. SFS 2373:1992: Welding — Load capacity of welded joints in fatigue loaded steel structures, Finnish Standards Association, Helsinki, SFS, 1992.

  36. Sonsino C.M.: Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry, International Journal of Fatigue, 2009, vol. 31, 1, pp. 88–101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonsino, C.M. A Consideration of Allowable Equivalent Stresses for Fatigue Design of Welded Joints According to the Notch Stress Concept with the Reference Radii rref = 1.00 and 0.05 mm. Weld World 53, R64–R75 (2009). https://doi.org/10.1007/BF03266705

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03266705

IIW-Thesaurus keywords

Navigation