Skip to main content
Log in

Potentials of phototrophic bacteria in treating pharmaceutical wastewater

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

A suspended growth photobioreactor was utilized to treat pharmaceutical wastewater by a wild strain purple non-sulfur photosynthetic bacterium isolated from the soil. The strain was named Z08 and identified as Rhodobacter-sphaeroides by 16SrDN. The photobioreactor was illuminated externally with two (40 W) fluorescent compact light sources on both sides. Its operation pH and temperature were between 6.8–7.0 and 20–30 °C, respectively. Optimum growth of the isolate was obtained after enrichment of the pharmaceutical wastewater with 0.5 % ammonium sulfate and 0.1 % yeast extract under microaerobic optimum light (6000 lx) condition at 5d retention. Using these optimum conditions, the maximum dry cell weight and chemical oxygen demand percentage removal were 880 mg/L and 80 %. Chemical analysis of the culture after treatment of the enriched and non-enriched wastewater showed the crude protein content of the biomass to be 54.6 % and 38.0 %, respectively. This study proved that photosynthetic bacteria could transform complex wastewater that contains recalcitrant organic compounds with a resultant recovery of useful products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, (1992). Standard Methods for the Examination of Water and Wastewater, 18th Ed. American public Health Association Washington, DC. USA.

    Google Scholar 

  • Banerjee, S.; Azad, S. A.; Vikineswary, S.; Selvaraj O. S.; Mukherjee, T. K.; (2000). Phototrophic bacteria as fish feed supplements. Asian-Aust. J. Anim. Sci., 13 (7), 991–994 (4 pages). (in-Chinese)

    Google Scholar 

  • Banu J. R.; Kallappan S.; Yeom I. T.; 2007. Treatment of domestic wastewater using upflow anaerobic sludge blanket reactor. Int. J. Environ. Sci. Tech., 4 (3), 363–370 (8 pages).

    CAS  Google Scholar 

  • Bertling, K.; Hurse, T. J.; Kappler, U.; Bakie, A. D., (2006). Cultivation of photosynthetic bacteria using Vertical-Cavity Surface-Emitting Lasers. UQ ITEE Innovation Expo.

  • Bitton, G., (2005). Microbiology, 3rd Ed. 55–72, 213-222, 502-518. Wiley-Liss Pub, N.Y.

    Google Scholar 

  • Cheremisinoff, N. P.; (1996). Biotechnology for Waste and Wastewater Treatment. Noyes Publishers, Westwood, New Jersey, USA. 116.

    Google Scholar 

  • Choorit, W.; Thanahoset, P.; Thongpradistha, J.; Sasaki, K.; Noparatnaraporn, N.; (2002). Identification and cultivation of photosynthetic bacteria in wastewater from a concentrated latex processing factory. Biotechnol. Lett. 24 (13), 1055–1058 (4 pages).

    Article  CAS  Google Scholar 

  • Cokgor, U. E.; Karahan, O.; Dogruel, S.; Orion, D., (2004). Biological treatability of raw and ozonated penicillin formulated effluent. J. Hazard. Mater., 116 (1–2), 159–166 (8 pages).

    Article  CAS  Google Scholar 

  • Eloi, G; Manuel, O.; Isidre, G.; Montserra, L.; Jordi, B., (1992). Isolation and characterization of a recombination defective-dependent bacteriophage of Rhodobacter sphaeroides. Curr. Microbiol., 24 (3), 151–157 (7 pages).

    Article  Google Scholar 

  • Galley, A. G.; Forster, C. F.; Stafford, D. A, (1977). Treatment of Industrial Effluent. Hodder and Stoughton. London, UK.

    Google Scholar 

  • Getha, K.; Chong, V. C.; Vikineswary, S., (1998). Potential use of the phototrophic bacteria, Rhodopseudomonas Palustris as an aqua-culture feed. Asian Fish. Sci., 10, 223–232 (10 pages).

    Google Scholar 

  • Holt, J. G; Krieg, N. R.; Sneath, P. H. A.; Staley, J. T.; Williams, S. T., (1994). Bergey’s manual of determinative bacteriology. 9th. Ed., Baltimore; the Williams Wilkins Co., 787.

    Google Scholar 

  • Hosseini F.; Malekzadeh F.; Amirmozafari N.; Ghaemi N.; 2007. Biodegradation of anionic surfactant by isolated bacteria from activated sludge. Int. J. Environ. Sci. Tech., 4 (1), 127–132 (6 pages).

    Article  CAS  Google Scholar 

  • Howard, G, (1987). The world of microbes. The Benjamin Cummings Publishing, Inc. USA.

    Google Scholar 

  • Huseyin, T.; Oken, B.; Selale, S. A.; Tolga, H. B.; Ceribas, I. B.; Sarin, F. D.; Filiz, B. D.; Ulku, Y., (2006). Use of fenton oxidation to improve the biodegradability of pharmaceutical wastewater. J. Hazard. Mater., 136 (2), 258–265 (8 pages).

    Article  Google Scholar 

  • Imhoff, J. F.; Trüper, H. G, (1989). Purple nonsulfur bacteria. In: Staley, J. T. (Ed.), Bergey’s manual of systematic bacteriology. Baltimore, Williams and Wilkins. 3, 9th. Ed., 1904–1910.

    Google Scholar 

  • Kakabadse, G, (1979). Chemistry of effluent treatment. Appl. Sci. Publishers Ltd. Manchester, UK. 25–59.

    Google Scholar 

  • Kantachote, D.; Salwa, T.; Kamontam, U., (2005). The potential use of anoxygenic photosynthetic bacteria for treating latex rubber sheet wastewater. Electron. J. Biotech., 8 (3), 314–323 (10 pages).

    Article  CAS  Google Scholar 

  • Kasomu, I. B. M.; Obst M., (2009). The influence of picocyanobacterial photosynthesis on calcite precipitation. Int. J. Environ. Sci. Tech., 6 (4), 557–562 (6 pages).

    Google Scholar 

  • Lorrungruang, C.; Martthong, J.; Sasaki, K.; Noparatnaraporn N., (2006). Selection of photosynthetic bacterium Rhodobacter Sphaeroides 14F for polyhydroxyalkanoate production with two-stage aerobic dark cultivation. J. Biosci.Bioeng., 102 (2), 128–131 (4 pages).

    Article  CAS  Google Scholar 

  • Madigan, M. T.; Jung, D. O.; Woese, C. R.; Achenbach, L. A.; (2000). Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch. Microbiol., 173 (4), 269–277 (9 pages).

    CAS  Google Scholar 

  • Martinez-Tabche, L.; Ramirez-Mora, B.; Germán-Fa, C; Galar-Castelán, I.; Madrigal-Ortiz, M.; Ulloa-González, V.; Orozco-Flores, M.; (1997). Toxic effects of sodium dodecylbenzensulfonato, lead, petroleum and their mixtures on the activity of acetylcholinesterase of Moina macrocopa in vitro. Environ. Toxicol. Water Qual., 12, (3), 211–215 (5 pages).

    Article  CAS  Google Scholar 

  • Myung, K. K.; Choi, K. M.; Yin, C. R.; Lee, K. Y.; Im, W. T.; Lim, J. H.; Lee, S. T., (2004). Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseupdomonas Pulustris, isolated from eutrophicated ponds. Biotech Lett., 26 (10), 819–822 (4 pages).

    Article  Google Scholar 

  • Okubo, Y.; Hiroyuki, F.; Akira, H., (2006). Characterization of phototrophic purple non-sulfur Bacteria forming colored microbial mats in a swine wastewater Ditch. Appl. Environ. Microb., 12 (9), 6225–6233 (9 pages).

    Article  Google Scholar 

  • Prasertsan, P.; Jaturapornpipat, M.; Sirpatana, C., (1997). Utilization and treatment of tuna condensate by photosynthetic bacteria. Pure Appl. Chem., 69 (11), 2438–2445 (8 pages).

    Article  Google Scholar 

  • Ren, N.; Chen, Z.; Wang, A.; Zhang, Z. P.; Yue, S., (2008). A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. Water Res., 42, (13), 3385–3392 (8 pages).

    Article  Google Scholar 

  • Rodriguez Fuentes, G.; Gold Bouchot, G, (2000). Environmental monitoring using acetyl cholinesterase inhibition in vitro: A case study in two Mexican lagoons. Mar. Environ. Res., 50 (1–5), 357–360 (4 pages).

    Article  CAS  Google Scholar 

  • Sapana, S.; Sujata, B.; Amruta, T.; Kalal, K.; Phalgune, U. D.; Deshpande, N. R., (2008). GC-MS Study of hydrocarbons- A Renewable Biofuel with high calorific value from aerial roots of ficus Benghalensis Linn. Electron. J. Environ., Agri. Food Chem., 7 (14), 2743–2748 (6 pages).

    Google Scholar 

  • Sasser, M., (1990). Identification of bacteria by gas chromatography of cellular Fatty acids. MIDI technical note 101. MIDI, Newark, Del. USA.

  • Speece, R. E., (1983). Anaerobic biotechnology for industrial Waste treatment. Environ. Sci. Tech., 17 (9), 416–427 (12 pages).

    Google Scholar 

  • Takeno, K.; Yamaoka, Y.; Sasaki, K., (2005). Treatment of oil- containing sewage wastewater using immobilized photosynthetic bacteria. W. J. of Microb. Biotech., 21 (8–9), 1385–1391 (7 pages).

    Article  CAS  Google Scholar 

  • Tchobanoglous, G.; Franklin, L. B.; Stensel, D. H., (2003). Wastewater Engineering, Treatment and Reuse. 4th. Ed. Metcalf and Eddy, Inc. NY. USA.

    Google Scholar 

  • Yegani, R.; Satoshi, Y.; Kazunori, M.; Tomoshisa, K; Shigeo, K., (2005). Improvement of growth stability of photosynthetic bacterium Rhodobacter capsulatus. J. Biosci Bioeng., 10 (6), 672–677 (6 pages).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Madukasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madukasi, E.I., Dai, X., He, C. et al. Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int. J. Environ. Sci. Technol. 7, 165–174 (2010). https://doi.org/10.1007/BF03326128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326128

Keywords

Navigation