Skip to main content
Log in

Formation of podiform chromitites by melt/rock interaction in the upper mantle

  • Mineral Deposit Letters
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

High-Cr and high-Al podiform chromitites are derived from melts formed by high and low degrees of partial melting in the upper mantle, respectively. The close association of the chromitites, regardless of compositions, with dunites and harzburgites can be explained by interaction between melts and harzburgites or depleted lherzolites in the upper mantle. Continuous reaction between melt and wallrock modifies the compositions of the magmas towards the precipitation of chromite alone under upper mantle conditions. The modified magmas would have higher silica and lower magnesia and would be extracted into the crust or erupted, leaving chromite pods in situ with dunite rinds that grade to harzburgites or lherzolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, S. (1992) Chemistry of chromium spinel in volcanic rocks as a potential guide to magma chemistry, Mineral. Mag. 56:173–184

    Article  Google Scholar 

  • Bacuta, G.C., Kay, R.W., Gibbs, A.K., Bruce, R.L. (1990) Platinum-group element abundances and distribution in chromite deposits of the Acoje Block, Zambales ophiolite complex, Philippines. J. Geochem. Explor. 37:113–145

    Article  Google Scholar 

  • Bai, W.-J., Zhou, M.-F., Robinson, P.T. (1993) Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Can. J. Earth Sci. 30: 1650–1659

    Google Scholar 

  • Barnes, S.J., Naldrett, A.J., Gorton, M.P. (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 53:303–323

    Article  Google Scholar 

  • Campbell, I.H., Murck, B.W. (1993) Petrology of the G and H chromitite zones in the Mountain View Area of the Stillwater complex, Montana. J. Petrol. 34:291–316

    Article  Google Scholar 

  • Dick, H.J.B., Bullen, T. (1984) Chromium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86:54–76

    Article  Google Scholar 

  • Fisk, M.R. (1986) Basalt-magma interactions with harzburgite and the formation of high magnesium andesites. Geophy. Res. Lett. 13:467–470

    Article  Google Scholar 

  • Hock, M., Friedrich, G., Pluger, W.L., Wichowski, A. (1986) Refractory- and metallurgical-type chromite ores, Zambales ophiolite, Luzon, Philippines. Mineralium Deposita 21:190–199

    Article  Google Scholar 

  • Irvine, T.N. (1977) Origin of chromite layers in the Muskox intrusion and other intrusions: a new interpretation. Geol. 5:273–277

    Article  Google Scholar 

  • Irvine, T.N., Sharpe, M.R. (1986) Magma mixing and the origin of stratiform oxide ore zones in the Bushveld and Stillwater complexes. In: Gallagher, M.J., Ixer, R.A., Neary, C.R., Richard, H.M. (eds.) Metallogeny of basic and ultrabasic rocks. Inst. Mining Metall., London, pp 183–198

    Google Scholar 

  • Kelemen, P.B., Dick, H.J.B., Quick, J.E. (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Article  Google Scholar 

  • Lago, B., Rabinowicz, M., Nicolas, A. (1982) Podiform chromite ore bodies: a genetic model. J. Petrol. 23:103–125

    Article  Google Scholar 

  • Leblanc, M., Violette, J.F. (1983) Distribution of Al-rich and Cr-rich chromite pods in ophiolites. Econ. Geol. 78:293–301

    Article  Google Scholar 

  • Leblanc, M., Ceuleneer, G. (1992) Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos 27:231–257

    Article  Google Scholar 

  • Murck, B.W., Campbell, I.H. (1986) The effects of temperature, oxygen fugacity and melt composition on the behavior of chromium in basic and ultrabasic melts. Geochim. Cosmochim. Acta 50:1871–1887

    Article  Google Scholar 

  • Pearce, J.A., Lippard, S.J., Roberts, S. (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar, B.P., Howells, M.F. (eds.) Marginal Basin Geology. Geol. Soc. London S pec. Publ. No. 16, pp 77–96

  • Quick, J.E. (1981) The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California. Contrib. Mineral. Petrol. 78:413–422

    Article  Google Scholar 

  • Robinson, P.T., Zhou, M.-F., Yang, J.-S, Bai, W.-J., Hu, X.-F. (1993) Tectonic evolution of ophiolites in the Asiatic orogenic belt. GAC/MAC Abstract program, Edmonton

  • Roeder, P.L., Reynolds, I. (1991) Crystallization of chromite and chromium solubility in basaltic melts. J. Petrol. 32:909–934

    Article  Google Scholar 

  • Sharpe, M.R. Irvine, T.N., (1983) Melting relations of the two Bushveld chilled margin rocks and implications for the origin of chromitite. Carn. Inst. Wash. Year Book 82:295–300

    Google Scholar 

  • Thayer, T.P. (1964) Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag district, Turkey. Econ. Geol. 59:1497–1524

    Article  Google Scholar 

  • Zhou, M.-F., Bai, W.-J. (1992) Chromite deposits in China and their origin. Mineralium Deposita 27:192–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M.F., Robinson, P.T. & Bai, W.J. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineral. Deposita 29, 98–101 (1994). https://doi.org/10.1007/BF03326400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326400

Keywords

Navigation