Skip to main content
Log in

Chromosomal alterations and male infertility

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Reduced male fertility can be caused by genetic factors affecting gamete formation or function; in particular, chromosome abnormalities are a possible cause of male subfertility as shown by their higher frequency in infertile men than in the general male population. Meiotic studies in a number of these males have shown spermatogenesis breakdown, often related to alterations in the process of chromosome synapsis. Indeed, any condition that can interfere with X-Y bivalent formation and X-chromosome inactivation is critical to the meiotic process; furthermore, asynapsed regions may themselves represent a signal for the meiotic checkpoint that eliminates spermatocytes with synaptic errors. We performed cytogenetic, hormonal and seminal studies in 333 infertile patients selected because azoospermic, severely oligozoospermic or normozoospermic with failure to fertilize the partner’s oocytes in an in vitro fertilization (IVF) program. Our findings: 1) confirm the high incidence of chromosomal anomalies among infertile males; 2) highlight the relevance in male infertility of quantitative/positional modifications of the constitutive heterochromatin; and 3) underline the relevance of cooperation between andrologists and cytogenetists prior to every kind of assisted reproduction, above all prior to intracytoplasmic sperm injection, in which selective hurdles eliminating abnormal germ cells are bypassed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson M.D. Genetic risks of intracytoplasmic sperm injection in the treatment of male infertility: recommendations for genetic counseling and screening. Fertil. Steril.1998, 70: 397–411.

    Article  CAS  PubMed  Google Scholar 

  2. Bahsin S., de Krestser D.M., Baker H.W. Clinical review 64: pathophysiology and natural hystory of male infertility. J. Clin. Endocrinol. Metab. 1994, 79: 1525–1529.

    Google Scholar 

  3. Chandley A.C. Chromosome anomalies and Y chromosome microdeletions as causal factors in male infertility. Hum. Reprod. 1998, 13: 45–50.

    Article  CAS  PubMed  Google Scholar 

  4. Van Assche E., Bonduelle M., Tournaye H., Joris H., Verheyen G., Devroey P., Van Stirteghem A., Liebaers I. Cytogenetics of infertile men. Hum. Reprod. 1996, 11 (Suppl. 4): 1–26.

    Article  PubMed  Google Scholar 

  5. Egozcue S., Blanco J., Vendrell J.M., Garcia F., Veiga A., Aran B., Barri P.N., Vidal F., Egozcue J. Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum. Reprod. Update 2000, 6: 93–105.

    Article  CAS  Google Scholar 

  6. Lifschytz E., Lindsley D.L. The role of X-chromosome inactivation during spermatogenesis. Proc. Natl. Acad. Sci. USA 1972, 69: 182–186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Odorisio T., Rodriguez T.A., Evans E.P., Clarke A.R., Burgoyne P.S. The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat. Genet. 1998, 18: 257–2661.

    Article  CAS  PubMed  Google Scholar 

  8. Vogt P.H. Molecular basis of male (in)fertility. Int. J. Androl. 1997, 20 (Suppl. 3): 2–10.

    CAS  PubMed  Google Scholar 

  9. Mittwoch U. Sex determination and sex reversal: genotype, phenotype, dogma and semantics. Hum. Genet. 1992, 89: 467–479.

    Article  CAS  PubMed  Google Scholar 

  10. Blanco J., Rubio C., Simon C., Egozcue J., Vidal F. Increased incidence of disomic sperm nuclei in a 47,XYY male assessed by fluorescent in situ hybridization (FISH). Hum. Genet. 1997, 99: 413–416.

    Article  CAS  PubMed  Google Scholar 

  11. Mroz K., Hassold T.J., Hunt P.A. Meiotic aneuploidy in the XXY mouse: evidence that a compromised testicular environment increases the incidence of meiotic errors. Hum. Reprod. 1999, 14: 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  12. Burgoyne P.S. Evidence for an association between univalent Y chromosome and spermatocyte loss in XYY mice and men. Cytogenet. Cell Genet. 1979, 23: 84–89.

    Article  CAS  PubMed  Google Scholar 

  13. Gabriel-Robez O., Rumpler Y. The meiotic pairing behaviour in human spermatocytes carrier of chromosome anomalies and their repercussions on reproductive fitness. II. Robertsonian and reciprocal translocations. A European collaborative study. Ann. Genet. 1996, 39: 17–25.

    CAS  Google Scholar 

  14. Rosenmann A., Wahrman J., Richler C., Voss R., Persitz A., Goldman B. Meiotic association between the XY chromosomes and unpaired autosomal elements as a cause of human male sterility. Cytogenet. Cell Genet. 1985, 39: 19–29.

    Article  CAS  PubMed  Google Scholar 

  15. Yu W.R., Gabriel-Robez O., Croquette M.F., Rigot J.M., Rumpler Y. X-Y quadrivalent association and sterility in a man carrier of a reciprocal autosomal translocation involving the whole arm of an acrocentric chromosome t(2;15)(q21,3;cen). Andrologia 1995, 27: 171–174.

    Article  CAS  PubMed  Google Scholar 

  16. Jaafar H., Gabriel-Robez O., Vignon F., Flori E., Rumpler Y. Supernumerary chromosomes and spermatogenesis in a human male carrier. Hum. Genet. 1994, 94: 74–76.

    Article  CAS  PubMed  Google Scholar 

  17. Batanian J., Hulten M.A. Electron microscopic investigations of synaptonemal complexes in an infertile human male carrier of a pericentric inversion inv(1) (p32q42). Regular loop formation but defective synapsis including a possible interchromosomal effect. Hum. Genet. 1987, 76: 81–89.

    Article  CAS  PubMed  Google Scholar 

  18. Chandley A.C., McBeath S., Speed R.M., Yorston L., Hargreave T.D. Pericentric inversion in human chromosome 1 and the risk for male sterility. J. Med. Genet. 1987, 24: 325–334.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yamada K. Population studies of INV(9) chromosomes in 4,300 Japanese: incidence, sex difference and clinical significance. Jpn. J. Hum. Genet. 1992, 37: 293–301.

    Article  CAS  PubMed  Google Scholar 

  20. Teo S.H., Tan M., Knight L., Yeo S.H., Ng I. Pericentric inversion 9: incidence and clinical significance. Ann. Acad. Med. Singapore 1995, 24: 302–304.

    CAS  PubMed  Google Scholar 

  21. Kleiman S.E., Yogev L., Gamzu R., Hauser R., Botchan A., Lessing J.B., Paz G., Yavetz H. Genetic evaluation of infertile men. Hum. Reprod. 1999, 14: 33–38.

    Article  CAS  PubMed  Google Scholar 

  22. Samonte R.V., Conte R.A., Ramesh K.H., Verma R.S. Molecular cytogenetic characterization of breakpoints involving pericentric inversions of human chromosome 9. Hum. Genet. 1996, 98: 576–580.

    Article  CAS  PubMed  Google Scholar 

  23. Wakimoto B. The spreading influence of heterochromatin. Trends Genet. 1997, 13: 349.

    Article  CAS  PubMed  Google Scholar 

  24. World Health Organization. Laboratory manual for the examination of human semen and semen-cervical mucus interaction. Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  25. Hsu L.Y., Benn P.A., Tannenbaum H.L., Perlis T.E., Carlson A.D. Chromosomal polymorphisms of 1, 9, 16, and Y in 4 major ethnic groups: a large prenatal study. Am. J. Med. Genet. 1987, 26: 95–101.

    Article  CAS  PubMed  Google Scholar 

  26. Walzer S., Gerald P.S. A chromosome survey of 13751 consecutive male newborns. In: Hook E.B., Porter I.H. (Eds.), Population cytogenetics: studies in human. Academic Press, New York, 1977, pp. 45–61.

    Google Scholar 

  27. Colls P., Blanco J., Martinez-Pasarell O., Vidal F., Egozcue J., Marquez C., Guitart M., Templado C. Chromosome segregation in a man heterozygous for a pericentric inversion, inv(9)(p11q13), analyzed by using sperm karyotyping and two-color fluorescence in situ hybridization on sperm nuclei. Hum. Genet. 1997, 99: 761–765.

    Article  CAS  PubMed  Google Scholar 

  28. Foresta C., Galeazzi C., Bettella A., Stella M., Scandellari C. High incidence of sperm sex chromosomes aneuploidies in two patients with Klinefelter’s syndrome. J. Clin. Endocrinol. Metab. 1998, 83: 203–205.

    CAS  PubMed  Google Scholar 

  29. Tawn E.J., Earl R. The frequencies of constitutional chromosome abnormalities in an apparently normal adult population. Mutat. Res. 1992, 283: 69–73.

    Article  CAS  PubMed  Google Scholar 

  30. Page S.L., Shin J-C., Han J-Y., Choo K.H.A., Shaffer L.G. Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation. Hum. Mol. Genet. 1996, 5: 1279–1288.

    Article  CAS  PubMed  Google Scholar 

  31. Steinbach P., Djalali M., Hansmann I., Kattner E., Meisel-Stosiek M., Probeck H.D., Schmidt A., Wolf M. The genetic significance of accessory bisatellited marker chromosomes. Hum. Genet. 1983, 65: 155–164.

    Article  CAS  PubMed  Google Scholar 

  32. Pandiyan N., Jequier A.M. Mitotic chromosomal anomalies among 1210 infertile men. Hum.Reprod. 1996, 11: 2604–2608.

    Article  CAS  PubMed  Google Scholar 

  33. Bourrouillou J., Calvas P., Bujan L., Mieusset R., Mansat A., Pontonnier F. Mitotic chromosomal anomalies among infertile men. Hum. Reprod. 1997, 12: 2337–2338.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lenzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, A., Gandini, L., Petrinelli, P. et al. Chromosomal alterations and male infertility. J Endocrinol Invest 23, 677–683 (2000). https://doi.org/10.1007/BF03343793

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343793

Key-words

Navigation