Skip to main content
Log in

Environmental car exhaust pollution damages human sperm chromatin and DNA

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: The adverse role of traffic pollutants on male fertility is well known. Aim of this study was to evaluate their effects on sperm chromatin/DNA integrity. Methods: To accomplish this, 36 men working at motorway tollgates and 32 unexposed healthy men (controls) were enrolled. All of them were interviewed about their lifestyle. Hormone, semen samples, and environmental and biological markers of pollution were evaluated. Sperm chromatin and DNA integrity were evaluated by flow cytometry following propidium iodide staining and TUNEL assay, respectively. Results: LH, FSH, and testosterone serum levels were within the normal range in tollgate workers. Sperm concentration, total sperm count, total and progressive motility, and normal forms were significantly lower in these men compared with controls. Motorway tollgate workers had a significantly higher percentage of spermatozoa with damaged chromatin and DNA fragmentation, a late sign of apoptosis, compared with controls. A significant direct correlation was found between spermatozoa with damaged chromatin or fragmented DNA and the length of occupational exposure, suggesting a time-dependent relationship. Conclusion: This study showed that car exhaust exposure has a genotoxic effect on human spermatozoa. This may be of relevant importance not only for the reproductive performance of the men exposed, but also for the offspring health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whorton D, Krauss RM, Marshall S, Milby TH. Infertility in male pesticide workers. Lancet 1977, 2: 1259–61.

    Article  PubMed  CAS  Google Scholar 

  2. Whorton D, Milby TH, Krauss RM, Stubbs HA. Testicular function in DBCP exposed pesticide workers. J Occup Med 1979, 21: 161–6.

    PubMed  CAS  Google Scholar 

  3. Veulemans H, Steeno O, Masschelein R, Groeseneken D. Exposure to ethylene glycol ethers and spermatogenic disorders in man: a case-control study. Br J Ind Med 1993, 50: 71–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Figà-Talamanca I, Cini C, Varricchio GC, et al. Effects of prolonged autovehicle driving on male reproduction function: a study among taxi drivers. Am J Ind Med 1996, 30: 750–8.

    Article  PubMed  Google Scholar 

  5. Tielemans E, Burdorf A, te Velde ER, et al. Occupationally related exposures and reduced semen quality: a case-control study. Fertil Steril 1999, 71: 690–6.

    Article  PubMed  CAS  Google Scholar 

  6. De Rosa M, Zarrilli S, Paesano L, et al. Traffic pollutants affect fertility in men. Hum Reprod 2003, 18: 1055–61.

    Article  PubMed  CAS  Google Scholar 

  7. Boggia B, Carbone U, Farinaro E, et al. Effects of working posture and exposure to traffic pollutants on sperm quality. J Endocrinol Invest 2009, 32: 430–4.

    Article  PubMed  CAS  Google Scholar 

  8. Benoff S, Jacob A, Hurley IR. Male infertility and environmental exposure to lead and cadmium. Hum Reprod Update 2000, 6: 107–21.

    Article  PubMed  CAS  Google Scholar 

  9. Quintanilla-Vega B, Hoover D, Bal W, Silbergeld EK, Waalkes MP, Anderson LD. Lead effects on protamine-DNA binding. Am J Ind Med 2000, 38: 324–9.

    Article  PubMed  CAS  Google Scholar 

  10. Quintanilla-Vega B, Hoover DJ, Bal W, Silbergeld EK, Waalkes MP, Anderson LD. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem ResToxicol 2000, 13: 594–600.

    CAS  Google Scholar 

  11. Hartwig A. Current aspects in metal genotoxicity. Biometals 1995, 8: 3–11.

    Article  PubMed  CAS  Google Scholar 

  12. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 1995, 18: 321–36.

    Article  PubMed  CAS  Google Scholar 

  13. Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res 1996, 351: 199–203.

    Article  PubMed  Google Scholar 

  14. Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn LM. Oxidative damage in chemical teratogenesis. Mutat Res 1997, 396: 65–78.

    Article  PubMed  CAS  Google Scholar 

  15. Wellejus A, Poulsen HE, Loft S. Iron-induced oxidative DNA damage in rat sperm cells in vivo and in vitro. Free Radic Res 2000, 32: 75–83.

    Article  PubMed  CAS  Google Scholar 

  16. Lanzafame F, La Vignera S, Vicari E, Calogero AE. Oxidative stress and antioxidant medical treatment in male infertility. Reprod Biomed Online 2009, 19: 638–59.

    Article  PubMed  CAS  Google Scholar 

  17. Foresta C, Flohé L, Garolla A, Roveri A, Ursini F, Maiorino M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol Reprod 2002, 67: 967–71.

    Article  PubMed  CAS  Google Scholar 

  18. Lintelmann J, Katayama A, Kurihara N, Shore L, Wenzel A. Endocrine disruptors in the environment (IUPAC Technical Report). Pure Appl Chem 2003, 75: 631–81.

    Article  CAS  Google Scholar 

  19. Brandenberger H. Solution of several problems of toxicologic and legal chemistry by atomic absorption. Ann Biol Clin (Paris) 1967, 25: 1053–62.

    CAS  Google Scholar 

  20. Schifman RB, Finley PR. Measurement of near-normal concentrations of erythrocyte protoporphyrin with the hematofluorometer: influence of plasma on “front-surface illumination” assay. Clin Chem 1981, 27: 153–6.

    PubMed  CAS  Google Scholar 

  21. Kelner MJ, Bailey DN. Mismeasurement of methemoglobin (“methemoglobin revisited”). Clin Chem 1985, 31: 168–9.

    PubMed  CAS  Google Scholar 

  22. World Health Organization. WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. Fourth Edition. Cambridge University Press, 1999.

  23. Perdichizzi A, Nicoletti F, La Vignera S, et al. Effects of tumour necrosis factor-α on human sperm motility and apoptosis. J Clin Immunol 2007, 27: 152–62.

    Article  PubMed  CAS  Google Scholar 

  24. Foster WG, McMahon A, Rice DC. Sperm chromatin structure is altered in cynomolgus monkeys with environmentally relevant blood lead levels. Toxicol Ind Health 1996, 12: 723–35.

    Article  PubMed  CAS  Google Scholar 

  25. Hernández-Ochoa I, García-Vargas G, López-Carrillo L, et al. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol (Elmsford, NY) 2005, 20: 221–8.

    Article  CAS  Google Scholar 

  26. Batra N, Nehru B, Bansal MP. The effect of zinc supplementation on the effects of lead on the rat testis. Reprod Toxicol (Elmsford NY) 1998, 12: 535–40.

    Article  CAS  Google Scholar 

  27. Batra N, Nehru B, Bansal MP. Reproductive potential of male Portan rats exposed to various levels of lead with regard to zinc status. Br J Nutr 2004, 91: 387–91.

    Article  PubMed  CAS  Google Scholar 

  28. Bonde JP, Joffe M, Apostoli P, et al. Sperm count and chromatin structure in men exposed to inorganic lead: lowest adverse effect levels. Occup Environ Med 2002, 59: 234–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 1993, 207: 202–5.

    Article  PubMed  CAS  Google Scholar 

  30. Leduc F, Nkoma GB, Boissonneault G. Spermiogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med 2008, 54: 3–10.

    Article  PubMed  CAS  Google Scholar 

  31. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl 2006, 27: 890–8.

    Article  PubMed  CAS  Google Scholar 

  32. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 1997, 68: 519–24.

    Article  PubMed  CAS  Google Scholar 

  33. Meng Z, Liu Y. Cell morphological ultrastructural changes in various organs from mice exposed by inhalation to sulfur dioxide. Inhal Toxicol 2007, 19: 543–51.

    Article  PubMed  CAS  Google Scholar 

  34. Selevan SG, Borkovec L, Slott VL, et al. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ Health Perspec 2000, 108: 887–94.

    Article  CAS  Google Scholar 

  35. Rubes J, Selevan SG, Evenson DP, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 2005, 20: 2776–83.

    Article  PubMed  CAS  Google Scholar 

  36. Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 2007, 625: 20–8.

    Article  PubMed  CAS  Google Scholar 

  37. Chen H, Goldberg MS, Villeneuve PJ. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health 2008, 23: 243–97.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Calogero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calogero, A.E., La Vignera, S., Condorelli, R.A. et al. Environmental car exhaust pollution damages human sperm chromatin and DNA. J Endocrinol Invest 34, e139–e143 (2011). https://doi.org/10.1007/BF03346722

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346722

Key-words

Navigation