Skip to main content
Log in

Arterial erectile dysfunction: Reliability of new markers of endothelial dysfunction

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: Blood endothelial progenitor cells (EPC) and microparticles (EMP) have been proposed as markers of endothelial dysfunction. Aim of this study was to evaluate a new immunophenotype of EPC and EMP in patients with arterial erectile dysfunction (AED) compared to psychogenic erectile dysfunction (PED). Materials and methods: One hundred patients (63.2±2.6 yr) with AED were enrolled in this study. Their EPC and EMP concentrations were compared to those of 40 patients with PED (64.2±2.7 yr). EPC (CD45neg/CD34pos/CD144pos) and EMP (CD45neg/CD144pos/AnnexinVpos) blood concentrations were evaluated by flow cytometry. Results: Patients with AED had significantly higher blood pressure, triglyc-erides, homeostasis model assessment index of insulin resistance, and cavernous artery acceleration time and intima-media thickness than PED; whereas international index of erectile function 5 score, HDL-cholesterol, and cavernous artery peak systolic velocity was lower than PED. Both EPC and EMP were significantly higher in patients with AED compared to patients with PED. Conclusions: Patients with AED showed worse metabolic parameters, cavernous artery parameters, and higher EPC and EMP compared to patients with PED. This suggests that AED is an expression of endothelial dysfunction and that EPC and EMP may be considered predictors of endothelial dysfunction in patients with AED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wespes E, Schulman CC. Erectile dysfunction and cardiovascular diseases. Arch Esp Urol 2010, 63: 649–54.

    PubMed  CAS  Google Scholar 

  2. Kapur V, Schwarz ER. The relationship between erectile dysfunction and cardiovascular disease. Part I: pathophysiology and mechanism. Rev Cardiovasc Med 2007, 8: 214–9.

    Article  PubMed  Google Scholar 

  3. Corona G, Monami M, Boddi V, et al. Male sexuality and cardiovascular risk. A cohort study in patients with erectile dysfunction. J Sex Med 2010, 7: 1918–27.

    Article  PubMed  Google Scholar 

  4. Costa C, Virag R. The endothelial-erectile dysfunction connection: an essential update. J Sex Med 2009, 6: 2390–404.

    Article  PubMed  CAS  Google Scholar 

  5. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003, 107: 1164–9.

    Article  PubMed  Google Scholar 

  6. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275: 964–7.

    Article  PubMed  CAS  Google Scholar 

  7. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowt from blood. J Clin Invest 2000, 105: 71–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowt endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005, 112: 618–27.

    Article  Google Scholar 

  9. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005, 106: 1525–31.

    Article  PubMed  CAS  Google Scholar 

  10. Yoder MC, Mead LE, Prater D, et al. Re-defining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007, 109: 1801–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004, 103: 1580–5.

    Article  PubMed  CAS  Google Scholar 

  12. Schatteman GC, Dunnwald M, Jiao C. Biology of bone marrow-derived endothelial cell precursors. Am J Physiol Heart Circ Physiol 2007, 292: H1–18.

    Article  PubMed  CAS  Google Scholar 

  13. Güven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 2006, 48: 1579–87.

    Article  PubMed  Google Scholar 

  14. Case J, Mead LE, Bessler WK, et al. Human CD34+ AC133+ VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007, 35: 1109–18.

    Article  PubMed  CAS  Google Scholar 

  15. Timmermans F, Van Hauwermeiren F, De Smedt M, et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 2007, 27: 1572–9.

    Article  PubMed  CAS  Google Scholar 

  16. Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 1996, 122: 1363–71.

    PubMed  CAS  Google Scholar 

  17. Lampugnani MG, Corada M, Caveda L, et al. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, b-catenin, and a-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 1995, 129: 203–17.

    Article  PubMed  CAS  Google Scholar 

  18. Breier G, Breviario F, Caveda L, et al. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 1996, 87: 630–42.

    PubMed  CAS  Google Scholar 

  19. Navarro P, Caveda L, Breviario F, Mândoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and-independent functions of vascular endothelial cadherin. J Biol Chem 1995, 270: 30965–72.

    Article  PubMed  CAS  Google Scholar 

  20. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967, 13: 269–88.

    Article  PubMed  CAS  Google Scholar 

  21. Shet AS. Characterizing blood microparticles: technical aspects and challenges. Vasc Health Risk Manag 2008, 4: 769–74.

    PubMed Central  PubMed  Google Scholar 

  22. Schwartzenberg S, Deutsch V, Maysel-Auslender S, Kissil S, Keren G, George J. Circulating apoptotic progenitor cells: a novel biomarker in patients with acute coronary syndromes. Arterioscler Thromb Vasc Biol 2007, 27: e27–31.

    Article  PubMed  CAS  Google Scholar 

  23. Nozaki T, Sugiyama S, Sugamura K, et al. Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 2010, 12: 1223–8.

    Article  PubMed  Google Scholar 

  24. Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med 2009, 13: 454–71.

    Article  PubMed  CAS  Google Scholar 

  25. Curtis AM, Zhang L, Medenilla E, et al. Relationship of microparticles to progenitor cells as a measure of vascular health in a diabetic population. Cytometry B Clin Cytom 2010, 78: 329–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Rosen RC, Cappelleri JC, Smith MD, Lipsky J, Pena BM. Development and evaluation of an abridged, 5 item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot Res 1999, 11: 319–26.

    Article  PubMed  CAS  Google Scholar 

  27. Benson CB, Aruny JE, Vickers MA Jr. Correlation of duplex sonography with arteriography in patients with erectile dysfunction. AJR Am J Roentgenol 1993, 160: 71–3.

    Article  PubMed  CAS  Google Scholar 

  28. Speel TG, van Langen H, Wijkstra H, Meuleman EJ. Penile duplex pharmaco-ultrasonography revisited: revalidation of the parameters of the cavernous arterial response. J Urol 2003, 169: 216–20.

    Article  PubMed  CAS  Google Scholar 

  29. Petrone L, Mannucci E, Corona G, et al. Structured interview on erectile dysfunction (SIEDY): a new, multidimensional instrument for quantification of pathogenetic issues on erectile dysfunction. Int J Impot Res 2003, 15: 210–20.

    Article  PubMed  CAS  Google Scholar 

  30. Caretta N, Palego P, Schipilliti M, Ferlin A, Di Mambro A, Foresta C. Cavernous artery intima-media thickness: a new parameter in the diagnosis of vascular erectile dysfunction. J Sex Med 2009, 6: 1117–26.

    Article  PubMed  Google Scholar 

  31. Jy W, Horstman LL, Jimenez JJ, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost 2004, 2: 1842–51.

    Article  PubMed  CAS  Google Scholar 

  32. Khan SS, Solomon MA, McCoy JP Jr. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom 2005, 64: 1–8.

    Article  PubMed  Google Scholar 

  33. Mariucci S, Rovati B, Bencardino K, Manzoni M, Danova M. Flow cytometric detection of circulating endothelial cells and endothelial progenitor cells in healthy subjects. Int J Lab Hematol 2010, 32: e40–8.

    Article  PubMed  CAS  Google Scholar 

  34. Masouleh BK, Baraniskin A, Schmiegel W, Schroers R. Quantification of circulating endothelial progenitor cells in human peripheral blood: establishing a reliable flow cytometry protocol. J Immunol Methods 2010, 357: 38–42.

    Article  PubMed  CAS  Google Scholar 

  35. van Ierssel SH, Van Craenenbroeck EM, Conraads VM, et al. Flow cytometric detection of endothelial microparticles (EMP): effects of centrifugation and storage alter with the phenotype studied. Thromb Res 2010, 125: 332–9.

    Article  PubMed  CAS  Google Scholar 

  36. Dotsenko O. Stem/Progenitor cells, atherosclerosis and cardiovascular regeneration. Open Cardiovasc Med J 2010, 4: 97–104.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A. Endothelial microparticles in diseases. Cell Tissue Res 2009, 335: 143–51.

    Article  PubMed  Google Scholar 

  38. La Vignera S, Condorelli RA, Vicari E, D’Agata R, Calogero AE. New immunophenotype of blood endothelial progenitor cells and endothelial microparticles in patients with arterial erectile dysfunction and late-onset hypogonadism. J Androl 2011, 32: 50917.

    Google Scholar 

  39. Yamamoto K, Takahashi T, Asahara T, et al. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 2003, 95: 2081–8.

    PubMed  Google Scholar 

  40. Real C, Caiado F, Dias S. Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do? Cardiovasc Hematol Disord Drug Targets 2008, 8: 185–93.

    Article  PubMed  CAS  Google Scholar 

  41. Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 2003, 93: e17–24.

    Article  PubMed  CAS  Google Scholar 

  42. Kong D, Melo LG, Gnecchi M, et al. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 2004, 110: 2039–46.

    Article  PubMed  CAS  Google Scholar 

  43. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004, 95: 343–53.

    Article  PubMed  CAS  Google Scholar 

  44. Foresta C, Caretta N, Lana A, Cabrelle A, Palù G, Ferlin A. Circulating endothelial progenitor cells in subjects with erectile dysfunction. Int J Impot Res 2005, 17: 288–90.

    Article  PubMed  CAS  Google Scholar 

  45. Adams V, Lenk K, Linke A, et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol 2004, 24: 684–90.

    Article  PubMed  CAS  Google Scholar 

  46. Massa M, Rosti V, Ferrario M, et al. Increased circulating hemato-poieticand endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 2005, 105: 199–206.

    Article  PubMed  CAS  Google Scholar 

  47. Sandri M, Adams V, Gielen S, et al. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation 2005, 111: 3391–9.

    Article  PubMed  Google Scholar 

  48. Cho HJ, Kim HS, Lee MM, et al. Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelization and reduce vascular inflammation after intravascular radiation. Circulation 2003, 108: 2918–25.

    Article  PubMed  CAS  Google Scholar 

  49. George J, Goldstein E, Abashidze S, et al. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J 2004, 25: 1003–8.

    Article  PubMed  CAS  Google Scholar 

  50. Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 2010, 26: 140–5.

    Article  PubMed  Google Scholar 

  51. Esposito K, Ciotola M, Giugliano F, et al. Phenotypic assessment of endothelial microparticles in diabetic and nondiabetic men with erectile dysfunction. J Sex Med 2008, 5: 1436–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. La Vignera MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Vignera, S., Condorelli, R., Vicari, E. et al. Arterial erectile dysfunction: Reliability of new markers of endothelial dysfunction. J Endocrinol Invest 34, e314–e320 (2011). https://doi.org/10.1007/BF03346728

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346728

Key-words

Navigation