Skip to main content
Log in

Effect of humic acids on thyroidal function

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Humic substances (HS) have been implicated as environmental goitrogens. Increased prevalence of goiter has been recently noticed in the blackfoot disease endemic area on the southwest coast of Taiwan, where well water is rich in HS. This study investigated the in vivo effects of humic acids (HA) on the thyroid gland of rats and mice. Groups of mice and rats were fed regular or moderately iodine deficient (∼167 vs 700 μg I per kg) chow and distilled water or HA water (1 mg/ml) for 3 or 4 months. Serum T4, T3, reverse T3, and/or TSH were measured by radioimmunoassay. Thyroidal 125I uptake was measured in mice at 2 h after injection of 1 μCi125I ip. Treatment of the rat with HA was associated with a significantly (p<0.05) reduced serum T4 without a change in other parameters of study. Treatment with low iodine diet was associated with a clear increase in serum T3 and a decrease in serum rT3. Rats treated with both HA and low iodine diet showed a significantly reduced serum T4, increased serum T3 and decreased serum rT3. In mice, treatment with low iodine diet significantly increased thyroidal 125I uptake and additional treatment with HA significantly enhanced the effect of low iodine diet. Treatment with HA did not influence thyroid weight of rats or mice given normal or iodine deficient diets. We conclude that HA per se do not induce goiter, but they may enhance the goitrogenic effect of low iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anonymous Humic acid. In: Windholz M., Budavari S., Blumetti R.R., Otterbin E.S. (Eds.), The Merck Index, ed. 10. Merck Sharp and Dohme Research Laboratories, Rahway, N.J. 1983, p. 4650.

  2. Bollag J.M., Loll M.J. Incorporation of xenobiotics in soil humus. Experientia39: 1221, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Sato T., Ose Y., Nagase H., Hayade K. Adsorption of mutagens by humic acid. The Science of the Total Environment 62: 305, 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Thanabalasingam P., Pickering W.F. Arsenic sorption by humic acids. Environ. Pollut. 12: 233, 1986.

    Article  CAS  Google Scholar 

  5. Huljev D.J. Trace metals in Humic acids and their hydrolysis products. Environ. Res. 39: 258, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Madhun Y.A., Freed V.H., Young J.L. Binding of ionic and neutral herbicides by soil humic acid. Am. J. Soil. Sci. 50: 319, 1986.

    Article  CAS  Google Scholar 

  7. Peng A., Xu L. The effects of humic acid on the chemical and biological properties of selenium in the environment. The science of the Total Environment 64: 89, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Burges N.A., Hurst H.M., Walkdene B. The phenolic constituents of humic acid and their relationship to the lingin of the plant cover. Geochim. Cosmochim. Acta 28: 1547, 1964.

    Article  CAS  Google Scholar 

  9. Choudhry G.G. Humic substances. Part I: Structural aspects. Toxicol. Enuiron. Chem. 4: 209, 1981.

    Article  CAS  Google Scholar 

  10. Keyser P., Pujar B.J., Eaton R.W., Ribons D.W. Biodegradation of the phthalates and their esters by bacteria. Environ. Health Perspect. 18: 159, 1976.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Jolley R.L., Gaitan E., Lee N.E., Lindsay R.J., Cooksey R.C., Hill J.R., Kelley K. Resorcinol, a potent antithyroid compound, detected in the water supply of a Colombia district with endemic goiter. J. Am. Chem. Soc. (Div. Environ. Chem.) 23: 175,1983.

    Google Scholar 

  12. Gaitan E., Jolley L., Lee N.E., Lindsay R.J., Cooksey R.C., Hill J.R., Kelly K. Phathalate ester: possible progoitrogens in water supply of a Colombia district with endemic goiter. J. Am. Chem. Soc. 23: 175, 1983.

    Google Scholar 

  13. Cooksey R.C., Gaitan E., Lindsay R.J., Hill J.R., Kelly K. Humic substances, a possible source of environmental goitrogens. Org. Geochem. 8: 77, 1985.

    Article  CAS  Google Scholar 

  14. Gaitan E., Medina T.A., Zia M.S. Goiter prevalence and bacterial contamination of water supply. J. Clin. Endocrinol. Metab. 51: 957, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Lu F.J., Yamamura Y., Yamauchi H. Studies of flurorescent compounds in water of a well in blackfoot disease endemic areas in Taiwan: Humic substances. J. Formosan Med. Assoc. 87: 66, 1988.

    CAS  Google Scholar 

  16. Lu F.J., Hsieh H.P., Yamauchi H., Yamamura Y. Flurorescent humic substances-arsenic complex in well water in areas where blackfoot disease is endemic in Taiwan. Apple. Organomet. Chem. 5: 507, 1991.

    Article  CAS  Google Scholar 

  17. Lin Y.C. Studies on causal mechanism of blackfoot disease. Mem. Coll. Med. Natl. Taiwan Univ. 17: 46, 1972.

    Google Scholar 

  18. Chang T.C., Hong M.C., Chen C.J. Higher prevalence of goiter in endemic area of blackfoot disease of Taiwan. J. Formosan Med. Assoc. 90: 941, 1991.

    PubMed  CAS  Google Scholar 

  19. Arnott F.G., Doniach I. The effects of compounds allied to resorcinol upon the uptake of radioactive iodine (131I) by the thyroid of the rat. Biochem. J. 50: 473, 1952.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Bull G.M., Fraser R. Myxedema from resorcinol ointment applied to leg ulcers. Lancet 1: 851, 1950.

    Article  PubMed  CAS  Google Scholar 

  21. Doniach I., Fraser R. Effects of resorcinol in the thyroid uptake of 131I in rats. Lancet 1: 855, 1950.

    Article  PubMed  CAS  Google Scholar 

  22. Donish I., Logothetopoulos J. The goitrogenic action of resorcinol in rats. Br. J. Exp. Path. 34: 146, 1953.

    Google Scholar 

  23. Koehrle J., Auf’Mkolk M., Spank M., Sonyi G., Cody V., Hesch R.D. Flavonoids inhibit enzymic thyroid hormone deiodination. In: Farkas L., Gabor M., Kallay F. (Eds.), Flavonoids and Bioflavonoids, 1985. Elsevier, Amsterdam, 1986, p. 411.

    Google Scholar 

  24. Sarkar J.M., Bollag J.M. Inhibitory effect of humic and fulvic acids on oxidoreductases as measured by the coupling of 2, 4-dichlorophenol to humic substances. Sci. Total. Environ. 62: 367, 1987.

    Article  CAS  Google Scholar 

  25. Huang T.S., Lu F.J. Iodine binding by humic acid. Environ. Toxicol. Chem. 10: 179, 1991.

    Article  Google Scholar 

  26. Huang T.S., Lu F.J., Chopra I.J. Inhibition of hepatic thyroxine 5′-monodeiodinase by humic acids. Environ. Toxicol. Chem. 12: 1267, 1993.

    Article  CAS  Google Scholar 

  27. Schnitzer M.Y. Organic matter characterization. In: Farkas L., Gabor M., Kallay F. (Eds.), Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties. Academic Press, New York, 1982, p. 581.

    Google Scholar 

  28. Chopra I.J., Fisher D.A., Solomon D.H., Beall G.N. Thyroxine and triiodothyronine in the human thyroid. J. Clin. Endocrinol. Metab. 36: 311, 1973.

    Article  PubMed  CAS  Google Scholar 

  29. Riesco G., Taurog A., Larsen P.R., Krulick L. Acute and chronic responses to iodine deficiency in rats. Endocrinology 100: 303, 1977.

    Article  PubMed  CAS  Google Scholar 

  30. Auf’Mkolk M., Amir S.M., Kubota K., Ingbar S.H. The active principles of plant extracts with antithyrotropic activity: oxidation products of derivaties of 3,4-dihydroxycinnamic acid. Endocrinology 116: 1677, 1985.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, TS., Lu, FJ., Tsai, CW. et al. Effect of humic acids on thyroidal function. J Endocrinol Invest 17, 787–791 (1994). https://doi.org/10.1007/BF03347776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347776

Key-words

Navigation