Skip to main content
Log in

Inhibition of rat hepatic thyroxine 5′-monodeiodinase by propylthiouracil: relation to site of interaction of thyroxine and glutathione

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

When rat liver cytosol, dialyzed free of glutathione, was chromatographed on Sephadex G-100 after incubation with 35S-propylthiouracil, 2 peaks of bound radioactivity were observed, 1 of which contained nearly all the thyroxine 5′-monodeiodinase activity in rat liver cytosol. Binding of propylthiouracil to this peak was inhibited by glutathione but not by thyroxine. Approximately 25% of 35S -propylthiouracil initially bound to the thyroxine 5′-monodeiodinating activity peak remained bound after dialysis, precipitation with trichloroacetic acid, and multiple extractions with ethanol, methanol, and chloroform, suggesting that binding was at least in part covalent. Dialysis studies showed that the presumed covalent binding of 35S -propylthiouracil to the thyroxine 5′-monodeiodinase peak could be inhibited by glutathione, dithioerythritol, and unlabelled propylthiouracil but not by oxidized glutathione or thyroxine. Conversely, thyroxine binding was unaffected by thiol compounds. We studied the kinetics of thyroxine 5′-monodeiodi-nation by radioimmunoassay techniques using rat liver homogenates as source of enzyme and observed the dependence of enzymic reaction upon glutathione (Km = 2.4 mM). Propylthiouracil inhibited the reaction and this inhibition could be overcome with increasing glutathione concentrations. We conclude that the thiol-dependent thyroxine 5′-monodeiodinase is inhibited by propylthiouracil through its covalent binding, probably as mixed disulfide, to a site on the enzyme at which glutathione interacts either as a cosubstrate or reducing agent. This binding site is separate from the site at which thyroxine binds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hogness J.R., Wong T., Williams R.H. I131 excretion after injection of radiothyroxine into hyper-thyroid, hypothyroid, or normal rats. Metabolism 3:510, 1954.

    PubMed  CAS  Google Scholar 

  2. Larson F.C., Tomita K., Albright E.C. The deiodination of thyroxine to triiodothyronine by kidney slices of rats with varying thyroid function. Endocrinology 57:338, 1955.

    Article  PubMed  CAS  Google Scholar 

  3. Escobar del Rey F., Morreale de Escobar G. The effect of propylthiouracil, methylthiouracil, and thiouracil on the peripheral metabolism of L-thyroxine in thyroidectomized, L-thyroxine maintained rats. Endocrinology 69:456, 1961.

    Article  Google Scholar 

  4. Oppenheimer J.H., Schwartz H.J., Surks M.I. Propylthiouracil inhibits the conversion of L-thyroxineto L-triiodothyronine. J. Clin. Invest. 51:2493, 1972.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Saberi M., Sterling F.H., Utiger R.D. Redution in extrathyroidal triiodothyronine production by propylthiouracil in man. J. Clin. Invest. 55:218, 1975.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Geffner D.L., Azukizawa M., Hershman J.M. Propylthiouracil blocks extrathyroidal conversion of thyroxine to triiodothyronine and augments thyrotropin secretion in man. J. Clin. Invest. 55:224, 1975.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Visser T.J., Van Der Does-Tobe I., Docter R., Henneman G. Conversion of thyroxine into triiodothyronine by rat liver homogenate. In: Robbins E.J., Braverman L.E. (Eds.), Thyroid research. Excerpta Medica, Amsterdam, 1976, p. 235.

    Google Scholar 

  8. Chiraseveenuprapund P., Buergi U., Goswami A., Rosenberg I.N. Conversion of L-thyroxine to triiodothyronine in rat liver homogenate. Endocrinology 102:612, 1978.

    Article  PubMed  CAS  Google Scholar 

  9. Gross J., Pitt-Rivers R. Thyroid hormone physiology and biochemistry: triiodothyronine in relation to thyroid physiology. Recent Prog. Horm. Res. 10; 109, 1954.

    CAS  Google Scholar 

  10. Braverman L.E., Ingbar S.H., Sterling K. Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J. Clin. Invest. 49:855, 1970.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Surks M.I., Schadlow A.R., Stock J.M., Oppenheimer J.H. Determination of iodothyronine absorption and conversion of L-thyroxine (T4) to L-triiodothyronine (T3) using turnover rate techniques. J.Clin. Invest. 52:805, 1973.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Hesch R.D., Brunner G., Soling D.H. Conversion of thyroxine (T4) and triiodothyronine (T3) and the subcellular localisation of the converting enzyme. Clin. Chim. Acta 59:209, 1975.

    Article  PubMed  CAS  Google Scholar 

  13. Chopra I.J. A study of extrathyroidal conversion of thyroxine (T4) to 3,3′,5′-triiodothyronine (T3) in vitro. Endocrinology 101:453, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Visser T.J., Van Der Does-Tobe I., Docter R., Henneman G. Conversion of thyroxine into triiodothyronine by rat liver homogenate. Biochem. J. 150:489, 1975.

    CAS  Google Scholar 

  15. Visser T.J., Van Der Does-Tobe I., Docter R., Henneman G. Subcellular localization of a rat liver enzyme converting thyroxine into triiodothyronine and possible involvement of essential thiol groups. Biochem. J. 157:479, 1976.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Hufner M., Grussendorf M., Ntokalou M. Properties of the thyroxine (T4) monodeiodinating system in rat liver homogenate. Clin. Chim. Acta 78:251, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Chopra I.J. Sulfhydril groups and the monodeiodination of thyroxine to triiodothyronine. Science 199:904, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Harris A.R.C., Fang S.L., Hinerfeld L., Braverman L.E., Vagenakis A.G. The role of sulfhydryl gorups on the impaired hepatic 3′,3,5-triiodothyronine generation from thyroxine in the hypothyroid, starved, fetal, and neonatal rodent. J.Clin. Invest. 63:516, 1979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Kaplan M.M., Utiger R.D. Iodothyronine metabolism in rat liver homogenates. J.Clin. Invest. 61:459, 1978.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Leonard J.L., Rosenberg I.N. Thyroxine 5′-deiodinase activity of rat kidney: observations on activation by thiols and inhibition by propylthiouracil. Endocrinology 103:2137, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Visser T.J. Mechanism of action of iodothyronine-5′-deiodinase. Biochim. Biophys. Acta 569:302, 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Yamada T., Kaplowitz N. Propylthiouracil: a substrate for the glutathione S-trans-ferases that competes with glutathione. J. Biol. Chem. 255:3508, 1980.

    PubMed  CAS  Google Scholar 

  23. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265, 1951.

    PubMed  CAS  Google Scholar 

  24. Chopra I.J., Ho R.S., Lam R. An improved radioimmunoassay of triiodothyronine in serum: its application to clinical and physiological studies. J. Lab. Clin. Med. 80:729, 1972.

    PubMed  CAS  Google Scholar 

  25. Lineweaver K., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658, 1934.

    Article  CAS  Google Scholar 

  26. Dixon M. The determination of enzyme inhibitor constants. Biochem. J. 55:170, 1953.

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Owens C.W., Belcher R.V. A colorimetric micromethod for the determination of glutathione. Biochem. J. 94:705, 1965.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Kaplowitz N. Interaction of azathioprine and glutathione in the liver of the rats. J. Pharmacol. Exp. Ther. 200:479, 1977.

    PubMed  CAS  Google Scholar 

  29. Yamada T., Ludwig S., Kuhlenkamp J., Kaplowitz N. Direct protection aganist acetaminophen hepatotoxicity by propylthiouracil: in vivo and in vitro studies in rats and mice. J. Clin. Invest. 67:688, 1981.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Leonard J.L., Rosenberg I.N. Characterization of essential enzyme sulfhydryl groups of thyroxine 5′-deiodinase from rat kidney. Endocrinology 106:444, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Visser T.J., Van Overmeeren E. Binding of radioiodinated propylthiouracil to rat liver microsomal fractions: stimulation by substrates for iodothyronine 5′-deiodinase. Biochem. J. 183:167, 1979.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Visser T.J. Mechanism of inhibition of iodothyronine-5′-deiodinase by thioureylenes and sulfite. Biochim. Biophys. Acta 611:371, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Keen J.H., Jakoby W.B. Glutathione S-transferases: catalysis of nucleophilic reactions of glutathione. J. Biol. Chem. 253:5654, 1978.

    PubMed  CAS  Google Scholar 

  34. Arias I.M., Jacoby W.B. Glutathione: Metabolism and function. Krocc foundation series. Raven Press, New York, 1976, vol. 6.

  35. Balsam M., Ingbar S.H. Observations on the factors that control the generation of triiodothyronine from thyroxine in rat liver and the nature of the defect induced by fasting. J.Clin. Invest. 63:1145, 1979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Lichter M., Fleischner G., Kirsch R., Levi A.J., Kamisaka K., Arias I.M. The role of ligandin and Z protein in the transfer of thyroid hormone from plasma into the liver. Am. J. Physiol. 230:1113, 1976.

    PubMed  CAS  Google Scholar 

  37. Ketley J.N., Habig W.H., Jacoby W.B. Binding of non-substrate ligands to the glutathione S-transferases. J. Biol. Chem. 250:8670, 1975.

    PubMed  CAS  Google Scholar 

  38. Dillman W., Surks M.I., Oppenheimer J.H. Quantitative aspects of iodothyronine binding by cytosol proteins of rat liver and kidney. Endocrinology 95:492, 1974.

    Article  PubMed  CAS  Google Scholar 

  39. Maciel R.M.B., Ozawa Y., Chopra I.J. Subcellular localization of thyroxine and reverse triiodothyronine outer ring monodeiodinating activities. Endocrinology 104:365, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Chopra, I.J. & Kaplowitz, N. Inhibition of rat hepatic thyroxine 5′-monodeiodinase by propylthiouracil: relation to site of interaction of thyroxine and glutathione. J Endocrinol Invest 4, 379–387 (1981). https://doi.org/10.1007/BF03348299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03348299

Key-words

Navigation