Skip to main content
Log in

Effect of barbital on the pituitary-thyroid axis

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Barbital (diethylbarbituric acid), administered via the drinking water (0.1% solution), elicited mild goitrogenic responses in rats (p < 0.05), accompanied by a slight depression in serum T4 titers (p < 0.02). The goitrogenic responses appeared to be the result of slight elevations in the serum TSH levels and in the case of neonate rats, whose mothers were fed barbital during pregnancy and lactation, the elevations of TSH in the circulation were pronounced (p < 0.01). However, continuation of barbital treatment beyond puberty resulted in mean serum TSH titers declining to twice the mean control values so that only the variances between the data were different(p < 0.05)This group of young adults showed endocrine profiles which resembled those of more mature rats. The latter group included the mothers of these young adults and of the neonates. In contrast to the action of barbital, feeding rats 0.05% propylthiouracil (PTU) in the drinking water caused substantial increases in mean serum levels of TSH (p < 0.001) and goiter size (p < 0.001). Moreover, the precipitous declines in serum T4 elicited by PTU were of far greater magnitude than that caused by barbital (p < 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Premachandra B.N., Lang S. Pentobarbitone-barbitone anesthesia and thyroid function in the rat. J. Endocrinol. 33: 533, 1965.

    Article  PubMed  CAS  Google Scholar 

  2. Brown M.R., Hedge G.A. Thyroid secretion in the unanesthetized, stress-free rat and its suppression by pentobarbital. Neuroendocrinology 9: 158, 1972.

    Article  PubMed  CAS  Google Scholar 

  3. Negrie C., Naltchayan S., Bouhnik J., Michel R. Comparative effects of dexamethasone and phenobarbital on adrenal cortex liver cytochrome P450 contents and serum thyroid hormones. J. Steroid Biochem. 70: 431, 1979.

    Article  Google Scholar 

  4. Rootwelt K., Ganes T., Johannessen S.I. Effect of carbamazepine, phenytoin and phenobarbitone on serum levels of thyroid hormones and thyrotropin in humans. Scand. J. Clin. Lab. Invest. 38: 731, 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Yeo P.P.B., Bates D., Howe J.G., Ratcliffe W.A., Schardt C.W., Heath A., Evered D.C. Anticonvulsants and thyroid function. Br. Med. J. 7: 1581, 1978.

    Google Scholar 

  6. Japundzic M. Effect of phenobarbiton on the weight and histological — structure of the rat thyroid. Lugoslav. Pharmacol. Acta 4: 101, 1968.

    Google Scholar 

  7. Japundzic M., Japundzic I. Observations of the anterior pituitary cytology in the phenobarbital-treated rat. Virchows Arch. Cell. Pathol. 7: 229, 1971.

    CAS  Google Scholar 

  8. Ching M., Evans A.B., Evans E.S., Joseph S., Sorrentino S., Jr. Pituitary thyrotroph function in hypothyroid rats. Acta Endocrinol. (Kbh.) 75: 221, 1974.

    CAS  Google Scholar 

  9. Ching M.C.H., Schalch D.S., Lebda N.J.A. Role of growth hormone in the enhancement of the propylthiouracil-induced goitrogenesis by small doses of thyroxine. Acta Endocrinol. (Kbh.) 79: 238, 1975.

    CAS  Google Scholar 

  10. Choi S.C. Introductory applied statistics in science. Prentice Hall, New Jersey, 1978, p. 137.

    Google Scholar 

  11. Liberti P., Stanbury J.B. The pharmacology of substances affecting the thyroid gland. Ann. Rev. Pharmacol. Toxicol. 11: 113, 1971.

    Article  CAS  Google Scholar 

  12. Astwood E.B. Section XVII. Hormones and hormones antagonists. In: Goodman L.G., and Gilman A., (Eds.), The pharmacological basis of therapeutics Macmillan Co., Inc., New York 1970, p. 1484.

    Google Scholar 

  13. Cavalieri R.R., Sung L.C., Becker C.E. Effects of phenobarbital on thyroxine and triiodothyronine kinetics in Graves’ disease. J. Clin. Endocrinol. Metab. 37: 308, 1973.

    Article  Google Scholar 

  14. Sterling K., Brenner M.A., Saldanha V.F. Conversion of thyroxine to triiodothyronine by cultured human cells. Science 179: 1000, 1973.

    Article  PubMed  CAS  Google Scholar 

  15. Hufner M., Grussendorf M. Investigations on the deiodination of thyroxine (T4) to 3,3′-diiodothyronine (3,3′-T2) in rat liver homogenate. Clin. Chim. Acta 85: 243, 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Yamada T., Koizumi Y., Kojima A. An increase of liver uptake of thyroxine, an initial step of an increased fecal loss of thyroxine in response to propylthiouracil in rats. Arch. Int.Pharmacodyn. Ther. 224: 21, 1976.

    PubMed  CAS  Google Scholar 

  17. Oppenheimer J.H., Bernstein G., Surks M.I. Increased thyroxine turnover and thyroidal function after stimulation of hepatocellular binding of thyroxine by phenobarbital. J. Clin. Invest. 47: 1399, 1968.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ching, M. Effect of barbital on the pituitary-thyroid axis. J Endocrinol Invest 4, 389–392 (1981). https://doi.org/10.1007/BF03348300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03348300

Key-words

Navigation