Skip to main content
Log in

Furosemide, fenclofenac, diclofenac, mefenamic acid and meclofenamic acid inhibit specific T3 binding in isolated rat hepatic nuclei

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Previous studies with Phenytoin (DPH) show that this inhibitor of thyroid hormone binding to plasma proteins also interacts with specific nuclear T3 binding sites. In order to further define the nuclear effects of drugs that inhibit plasma protein binding of thyroid hormones, we assessed furosemide and a number of non-steroidal antiinflammatory drugs using isolated rat liver nuclei. The effects were compared with those of DPH, ipodate and amiodarone. The T3 binding site in isolated nuclei (Ka 1.2×109M−1) showed relative affinity triac ≈ T3>T4. Drugs were studied over the concentration range 10−3-10−7M, approximating the known therapeutic total plasma concentrations, in competition with 125|-T3 0.1 nM, expressing inhibition as the percent decrement from maximum specific binding of 125|-T3 in drug vehicle (assay buffer or ethanol 1–10%). Specific T3 binding was inhibited by furosemide to 78.8 ± 3.5% at 2 mM, by fenclofenac to 37.6 ± 2.8% at 1 mM, by meclofenamic acid to 70.2 ± 2.4% at 0.1 mM, by mefenamic acid to 60.6 ± 4.6% at 0.05 mM (each p< 0.02) and by diclofenac to 87.4 ± 5.6% at 0.2 mM (p < 0.05). In comparison, DPH inhibited T3 binding to only 88.1 ± 0.6% at 0.3 mM, as did calcium ipodate (68 ± 3.5% at 1 mM, p<0.02). Amiodarone (0.3 mM), sodium salicylate (1 mM) and phenylbutazone (0.1 mM) were inactive. In order to achieve a level of nuclear receptor occupancy that approaches in vivo occupancy, the concentration 125|-T3 was increased over the range 0.1–0.5 nM. At constant drug concentrations, the decrease in the concentration of bound 125|-T3 induced by furosemide, fenclofenac, diclofenac, mefenamic acid, and meclofenamic acid and ipodate was accentuated by increased receptor occupancy, as previously demonstrated with DPH. These studies demonstrate that a wide range of bicyclic drugs may interact with specific nuclear T3 binding sites, over a range of total concentrations similar to those previously reported as inhibitory for DPH and ipodate. The molecular basis for the relationship between inhibition of specific nuclear receptor and plasma protein binding remains unknown, and the potential for these drugs to alter expression of thyroid hormone action is not yet defined. Effects on TSH secretion, previously attributed to changes in circulating free hormone concentration, could also result from interaction with nuclear receptors. It will be necessary to consider the relationship between free intranuclear drug and T3 concentrations to further define these potentially-important pharmacologic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oppenheimer J.H. Thyroid hormone action at the cellular level. Science 203: 971, 1979.

    Article  CAS  PubMed  Google Scholar 

  2. Mann D.N., Surks M.I. 5, 5’-diphenylhydantoin decreases specific 3, 5, 3’-triio- dothyronine (T3) binding by rat hepatic nuclear T3 receptors. Endocrinology 112: 1723, 1983.

    Article  CAS  PubMed  Google Scholar 

  3. Mann D.N., Kumara-Siri M.K., Surks M.I. Effect of 5, 5’-diphenylhydantoin on the activities of hepatic cytosol malic enzyme and mitochondrial α-glycerophosphate dehydrogenase in athyreotic rats. Endocrinology 112: 1732, 1983.

    Article  CAS  PubMed  Google Scholar 

  4. Smith P.J., Surks M.I. 5, 5’-diphenylhydantoin (Dilantin) decreases cytosol and specific nuclear T3 binding in rat anterior pituitary in vivo and in cultured GC cells. Endocrinology 115: 283, 1984.

    Article  CAS  PubMed  Google Scholar 

  5. Smith P.J., Surks M.I. Multiple effects of 5, 5’-diphenylhydantoin on the thyroid hormone system. Endocr. Rev. 5: 514, 1984.

    Article  CAS  PubMed  Google Scholar 

  6. DeGroot L.J., Rue P.A. Roentgenographic contrast agents inhibit triiodothyronine binding to nuclear receptors in vitro. J. Clin. Endocrinol. Metab. 49: 538, 1979.

    Article  CAS  PubMed  Google Scholar 

  7. Felicetta J.V., Green W.L., Huber-Smith M.J. Effects of cholecystography agents and sulfobromphthalein on binding of thyroid hormones to serum proteins. J. Clin. Endocrinol. Metab. 57: 207, 1983.

    Article  CAS  PubMed  Google Scholar 

  8. Franklyn J.A., Davis J.R., Gammadge M.D., Littler W.A., Ramsden D.B., Sheppard M.L. Amiodarone and thyroid hormone action. Clin. Endocrinol. (Oxf.) 22: 257, 1985.

    Article  CAS  Google Scholar 

  9. Sogol P.B., Hershman J.M., Reed A.W., Dillmann W.H. The effects of amiodarone on serum thyroid hormones and hepatic thyroxine 5’-monodeiodination in rats. Endocrinology 113: 1464, 1983.

    Article  CAS  PubMed  Google Scholar 

  10. Eil C., Chestnut R.Y. The effects of radiographic contrast agents and other compounds on the nuclear binding of L[125|] triiodothyronine in dispersed human skin fibroblasts. J. Ciin. Endocrinol. Metab. 60: 548, 1985.

    Article  CAS  Google Scholar 

  11. Stockigt J.R., Lim C-F., Barlow J.W., Stevens V., |opliss D.J., Wynne K.N. High concentrations of furosemide inhibit serum binding of thyroxine. J. Clin. Endocrinol. Metab. 59: 62, 1984.

    Article  CAS  PubMed  Google Scholar 

  12. Stockigt J.R., Lim C.-F., Barlow J.W., Wynne K.N., Mohr V.S., Topliss D.J., Hamblin P.S., Sabto J. Interaction of furosemide with serum thyroxine-binding sites: in vivo and in vitro studies and comparison with other inhibitors. J. Clin. Endocrinol. Metab. 60: 1025, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Newnham H.H., Hamblin P.S., Long F., Lim C.-F., Topliss D.J., Stockigt J.R. Effect of oral furosemide on diagnostic indices of thyroid function. Clin. Endocrinol. (Oxf.) 26: 423, 1987.

    Article  CAS  Google Scholar 

  14. Taylor R., Hutton C., Weeke J., Clark F. Fenclofenac-secondary effects upon the pituitary thyroid axis. Clin. Endocrinol. (Oxf.) 19: 683, 1983.

    Article  CAS  Google Scholar 

  15. Koizumi Y., Sato A., Yamada T., Inada M. Effect of mefenamic acid on plasma protein-thyroid hormone interaction, monodeiodination of thyroxine, urinary excretion of triiodothyronine and thyrotropin regulation. Clin. Exp. Pharmacol. Physiol. 77: 291, 1984.

    Article  Google Scholar 

  16. Lim C.F., Bay Y., Topliss D.J., Barlow J.W., Stockigt J.R. Drug and fatty acid effects on serum thyroid hormone binding. J. Clin. Endocrinol. Metab., in press.

  17. Oppenheimer J.H., Schwartz H.L., Koerner D., Surks M.I. Limited binding capacity for L-triiodothyronine in rat liver nuclei. J. Clin. Invest. 53: 768, 1974.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Surks M.I., Koerner D.H., Oppenheimer J.H. In vitro binding of L-triiodothyronine to receptors in rat liver nuclei. J. Clin. Invest. 55: 50, 1975.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Giles K.W., Myers A. An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature 206: 93, 1965.

    Article  CAS  Google Scholar 

  20. American Hospital Formulary Service. Drug Information 85. American Soc. Hospital Pharmacists, 1985, p. 705.

  21. Reynolds J.E.F. Martindale: the extra pharmacopoeia, ed. 28. The Pharmaceutical Press, London, 1982, p. 234.

    Google Scholar 

  22. Surks M.I., Ordene K.W., Kumara-Siri M.H., Mann D.N. Effect of diphenylhydantoin on TSH secretion in man and in the rat. J. Clin. Endocrinol. Metab. 56: 940, 1983.

    Article  CAS  PubMed  Google Scholar 

  23. Oppenheimer J.H., Tavernetti R.R. Studies on the thyroxine-diphenylhydantoin interaction: effect of 5, 5’-diphenylhydantoin on the displacement of L-thyroxine from thyroxine-binding globulin (TBG). Endocrinology 71: 496, 1962.

    Article  CAS  PubMed  Google Scholar 

  24. Chen W., Schussler G.C. Decreased serum free thyroxine concentration in patients treated with diphenylhydantoin. J. Clin. Endocrinol. Metab. 28: 181, 1968.

    Article  Google Scholar 

  25. Stockigt J.R., Munro S.L.A., Lim C-F., Arnott R.D., Hall J.G., Craik D.J., Topliss D.J. Competitive inhibition of T4 binding to transthyretin (TTR, prealbumin). Ann. Endocrinol. (Paris) 47: 28, 1986 (Abstract).

    Google Scholar 

  26. Oppenheimer J.H., Schwartz H.L. Stereospecific transport of triiodothyronine from plasma to cytosol and from cytosol to nucleus in rat liver, kidney, brain and heart. J. Clin. Invest. 75: 147, 1985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mooradian A.D., Schwartz H.L., Koerner D., Surks M.I. Transcellular and transnuclear transport of 3, 5, 3’-triiodothyronine in isolated hepatocytes. Endocrinology 117: 2449, 1985.

    Article  CAS  PubMed  Google Scholar 

  28. Ichikawa K., DeGroot L.J., Refetoff S., Horowitz A.L., Pollak E.R. Nuclear thyroid hormone receptors in cultured human fibroblasts: improved method of isolation, partial characterization, and interaction with chromatin. Metabolism 35: 861, 1986.

    Article  CAS  PubMed  Google Scholar 

  29. Lim C-F., Wynne K.N., Barned J.M., Topliss D.J., Stockigt J.R. Non-isotopic spectrophotometric determination of the unbound fraction of drugs in serum. J. Pharm. Pharmacol. 38: 795, 1986.

    Article  CAS  PubMed  Google Scholar 

  30. Krenning E.P., Docter R., Bernard H.F., Visser T.J., Hennemann G. Characteristic of active transport of thyroid hormone into rat hepatocyte. Biochim. Biophys. Acta 676: 314, 1981.

    Article  CAS  PubMed  Google Scholar 

  31. Andreasen F., Kjeldahl Christensen C., Kjaer Jacobsen F., Jansen J., Mogensen C.E., Lederballe Pedersen O. The individual variation in pharmacokinetics and pharmacodynamics of furosemide in young normal male subjects. Eur. J. Clin. Invest. 12: 247, 1982.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in part at the 61st meeting of the American Thyroid Association, September 1986. Supported in part by the National Health & Medical Research Council of Australia, and an Alfred Hospital Medical Research Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topliss, D.J., Hamblin, P.S., Kolliniatis, E. et al. Furosemide, fenclofenac, diclofenac, mefenamic acid and meclofenamic acid inhibit specific T3 binding in isolated rat hepatic nuclei. J Endocrinol Invest 11, 355–360 (1988). https://doi.org/10.1007/BF03349054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349054

En]Keywords

Navigation