Skip to main content
Log in

Successful treatment of hyperthyroidism due to nonneoplastic pituitary TSH hypersecretion with 3,5,3′-triiodothyroacetic acid (TRIAC)

  • Case Report
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The effects of 3,5,3′-triiodothyroacetic acid (TRIAC) or bromocriptine oral administration on serum TSH and thyroid hormone concentrations were studied in a 47 yr old woman affected with hyperthyroidism due to nonneoplastic pituitary hypersecretion of TSH. The diagnosis was made on the basis of elevated thyroid hormone levels (total T4 and T3:170–198 and 2.9–3.5 nmol/l;free T4 and T3:20.7–25.5 and 12.5–14.5 pmol/l, respectively) and inappropriately high serum TSH (9.7–15.6 μU/ml) in the absence of radiological evidence of pituitary tumor. Typical alterations of several parameters of peripheral thyroid hormone action [BMR: + 25%, pulse wave arrival time: 130 msec, pre-ejection period/left ventricular ejection time (PEP/LVET): 0.26] were indicative of hyperthyroidism. Abnormal thyroid stimulators, as well as substances known to interfere in RIA determination were absent. TSH secretion was suppressed by T3 (-90%), dopamine (-52%), bromocriptine (-44%), somatostatin (-45%) and dexamethasone (-36%) administration, and stimulated by TRH (+ 438%), domperidone (+ 123%) and methimazole (+426%). As these findings were suggestive of intact regulatory mechanisms for TSH secretion operating at a higher set point, therapeutical trials with either TRIAC or bromocriptine were carried out owing to the ability of these compounds to suppress TSH secretion. No significant variations in serum TSH, total and free thyroid hormone concentrations were observed after 2 months of bromocriptine treatment (10 mg/day). On the contrary, during TRIAC administration (3 mg/day for 3 weeks) serum TSH, total and free thyroid hormone concentrations fell to within the euthyroid range (TSH: 4.8 μU/ml; total T4 and T3:142 and 2.5 nmol/l; free T4 and T3:14.2 and 7.8 pmol/l, respectively) and all the parameters of peripheral thyroid hormone action reverted to normal (BMR: + 5%, pulse wave arrival time: 198 msec, PEP/LVET: 0.34), without any appreciable untoward effect. Lower TRIAC dose (1 mg/day was ineffective and its withdrawal was followed by a rapid elevation of serum TSH and thyroid hormone levels and reappearance of hyperthyroidism. Long term treatment with 2.1 mg/day caused the remission of clinical hyperthyroidism, though serum TSH levels still remained little above the normal range (5.2–7.1 μU/ml). It is concluded that the nonneoplastic pituitary TSH hypersecretion can be successfully treated with TRIAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gershengorn M.C., Weintraub B.D. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of “inappropriate secretion of TSH”. J. Clin. Invest. 58: 633, 1975.

    Article  Google Scholar 

  2. Kourides I.A., Weintraub B.D., Ridgway E.C., Maloof F. Secretion of alpha subunit of glycoprotein hormones by pituitary adenomas. J. Clin. Endocrinol. Metab. 43: 97, 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Elewaut A., Mussche M., Vermeulen A. Familial partial target organ resistance to thyroid hormones. J. Clin. Endocrinol. Metab. 43: 575, 1976.

    Article  PubMed  CAS  Google Scholar 

  4. Novogroder M., Utiger R., Boyar R, Levine L.S., Juvenile hyperthyroidism with elevated thyrotropin (TSH) and normal 24 hour FSH, LH, GH and prolactin secretory patterns. J. Clin. Endocrinol. Metab. 45: 1053, 1977.

    Article  Google Scholar 

  5. Sato T., Saida K., Suzuky Y., Takata I., Ishiguro K. A case of the syndrome of inappropriate secretion of TSH. Endocrinol. Jpn. 26: 623, 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Rosier A., Livtin Y., Hage C., Gross J., Cerasi E. Familial hyperthyroidism dueto inappropriate thyrotropin secretion successfully treated with triiodothyronine. J. Clin. Endocrinol. Metab. 54: 76, 1982.

    Article  Google Scholar 

  7. Weintraub B.D., Gershengorn M.C., Kourides I.A., Fein H. Inappropriate secretion of thyroid-stimulating hormone. Ann. Intern. Med. 95: 339, 1981.

    Article  Google Scholar 

  8. Samaan N.A., Osborne B.M., Mackay B., Leavens M.E., Duello T.M., Halmi N.S. Endocrine and morphologic studies of pituitary adenomas secondary to primary hypothyroidism. J. Clin. Endocrinol. Metab. 45: 903, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Bajorunas D.R., Rosner W., Kourides I.A. Responsiveness of inappropriate TSH secretion to bromocryptine therapy in a patient with resistance to thyroid hormone. Endocrinology, 111 (Suppl.): T–2, 1982.

    Google Scholar 

  10. Connell J.M.C., McCruden D.C., Davies D.L., Alexander W.D. Bromocriptine for inappropriate thyrotropin secretion. Ann. Intern. Med. 96: 251, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Burger A.G., Engler D., Sakoloff C., Staeheli V. The effects of tetraiodothyroacetic and triiodothyroacetic acids on thyroid function in euthyroid and hyperthyroid subjects. Acta Endocrinol. (Kbh.) 92: 453, 1979.

    Google Scholar 

  12. Medeiros-Neto G., Kallas W.G., Knobel M., Cavaliero H., Mattar E. TRIAC (3,5,3′triiodothyroacetic acid) partially inhibits the thyrotropin response to synthetic thyrotropin-releasing hormone in normal and thyroidectomized hypothyroid patients. J. Clin. Endocrinol. Metab. 50: 223, 1980.

    Article  PubMed  CAS  Google Scholar 

  13. Romelli P.B., Pennisi F., Vancheri L. Measurement of free thyroid hormones in serum by column adsorption chromatography and radioimmunoassay. J. Endocrinol. Invest. 2: 25, 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Odell W.D., Rayford P.F., Ross G.T. Simplified, partially automated method for radioimmunoassay of human thyroid stimulation, growth, luteinizing and follicle stimulating hormones. J. Lab. Clin. Med. 70: 973, 1967.

    PubMed  CAS  Google Scholar 

  15. Kourides I.A., Weintraub B.D., Levko M.A., Maloof F. Alpha and beta subunits of human thyrotropin: purification and development of specific radioimmunoassay. Endocrinology 94: 1411, 1974.

    Article  PubMed  CAS  Google Scholar 

  16. Cornale P., Bonazzi M., Multinu C., Romelli P.B., Vancheri L., Pennisi F. Column affinity chromatography for bound/free separation in ligand assay. Radioimmunoassay of choriomamotropin (human placental lactogen). Clin. Chem. 27: 986, 1981.

    Google Scholar 

  17. Macchia E., Fenzi G.F., Monzani F., Lippi F., Vitti P., Grasso L., Bartalena L., Baschieri L., Pinchera A. Comparison between thyroid stimulating and TSH-binding inhibiting immunoglobulins of Grave’s disease. Clin. Endocrinol. (Oxf.) 15: 175, 1981.

    Article  CAS  Google Scholar 

  18. Rodbard D., Fujita T., Rodbard S. Estimation of thyroid function by timing the arterial sounds. J.A.M.A. 201: 884, 1967.

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki H., Kasai K., Shimoda S.I. The diminished cardiac performance in severe thyrotoxicosis. Parabolic correlation of LVET/PEP to the circulating levels of thyroid hormones. J. Endocrinol. Invest. 4: 289, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Rosen S.W., Weintraub B.D., Vaitukaitis J.L., Sussman H. H., Hershman J.M., Muggia F.M. Placental proteins and their subunits as tumor markers. Ann. Intern. Med. 82: 71, 1975.

    Article  Google Scholar 

  21. Scanlon M.F., Lewis M., Weightman D.R., Chan V., Hall R. The neuroregulation of human thyrotropin secretion. In: Martini L., Ganong W.F. (Eds.), Frontiers in neuroendocrinology, vol. 6. Raven Press, New York, 1980, p. 333.

    Google Scholar 

  22. Shaw K.M., Lees A.J., Stern G.M. Bromocryptine and thyroid-stimulating-hormone secretion. Lancet 2,1128,1977.

    Article  PubMed  CAS  Google Scholar 

  23. Saberi M, Utiger R.D. Augmentation of thyrotropin responses to thyrotropin-releasing hormone following small decreases in serum thyroid hormone concentrations. J. Clin. Endocrinol. Metab. 40: 435, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Burger A., Dinichert D., Nicod P., Jenni M., Lemarchand-Beraud T., Vallotton M.B. Effects of amiodarone on serum triiodothyronine, reverse triiodothyronine, thyroxine and thyrotropin. A drug influencing peripheral metabolism of thyroid hormones. J. Clin. Invest. 58: 255, 1976.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from Ministero della Pubblica Istruzione, Roma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck-Peccoz, P., Piscitelli, G., Cattaneo, M.G. et al. Successful treatment of hyperthyroidism due to nonneoplastic pituitary TSH hypersecretion with 3,5,3′-triiodothyroacetic acid (TRIAC). J Endocrinol Invest 6, 217–223 (1983). https://doi.org/10.1007/BF03350611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350611

Key-words

Navigation