Skip to main content
Log in

Metal ion coordination in ‘R’ and ‘T’ state hybrid hemoglobins as revealed by optical, EPR and sulphhydryl reactivity studies

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The sulphhydryl environment in various mixed-metal hybrid hemoglobins, viz. α2(Cu)-β2(FeCO), α2(FeCO)-β2(Cu), α2(Cu)-β2(Ni), α2(Ni)-β2(Cu), was studied by reacting them with the sulphhydryl reagent, 4,4′-dithiodipyridine (4-PDS). The reactivity was compared with that of HbCO, NiHb and CuHb. It is found that there exists a correlation between conformational change and metal ion environment, not only at the extreme R and T states but also the intermediate conformations. EPR examinations of these hybrids show that both in R state-[Cu(II)-Fe(II)] and T state-[Cu(II)-Ni(II)] hybrids at neutral pH and in the absence of IHP, CuPPIX, irrespective of the subunit in which it is present, has a mixed-metal ion environment: Species 1, a five-coordinated Cu2+ complex with strong proximal histidine bond and species 2, a four-coordinated complex without any covalent linkage with Nε F8-histidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DTT:

dithiothrietol

EPR:

electron paramagnetic resonance

Hb:

hemoglobin

4-PDS:

4,4′-dithiodipyridine

References

  1. Ackers G K and Smith F T 1987 Annu. Rev. Biophys. Chem. 16 583

    Article  CAS  Google Scholar 

  2. Ogawa S and Shulman R G 1972 J. Mol. Biol. 70 315

    Article  CAS  Google Scholar 

  3. Ikeda-Saito M, Yamamoto H and Yonetani T 1977 J. Biol. Chem. 252 8639

    CAS  Google Scholar 

  4. Miura S and Ho C 1982 Biochemistry 21 6280

    Article  CAS  Google Scholar 

  5. Miura S and Ho C 1984 Biochemistry 23 2492

    Article  CAS  Google Scholar 

  6. Perutz M F 1972 Nature (London) 237 495

    Article  CAS  Google Scholar 

  7. Perutz M F, Fersht A R, Simon S R and Roberts G C K 1974 Biochemistry 13 2174

    Article  CAS  Google Scholar 

  8. Perutz M F, Kilmartin J V, Nagai K, Szabo A and Simon S R 1976 Biochemistry 15 378

    Article  CAS  Google Scholar 

  9. Inubushi T and Yonetani T 1983 Biochemistry 22 1894

    Article  CAS  Google Scholar 

  10. Scott T W, Friedman J M, Ikeda-Saito M and Yonetani T 1983 FEBS Lett. 158 68

    Article  CAS  Google Scholar 

  11. Shibayama N and Morimoto H 1986 J. Mol. Biol. 192 331

    Article  CAS  Google Scholar 

  12. Shibayama N, Inubushi T, Morimoto H and Yonetani T 1987 Biochemistry 26 2194

    Article  CAS  Google Scholar 

  13. Ishimori K and Morishima I 1988 Biochemistry 27 4060

    Article  CAS  Google Scholar 

  14. Nagai K and Kitagawa T 1980 Proc. Natl. Acad. Sci. (USA) 77 2033

    Article  CAS  Google Scholar 

  15. Maxwell J C and Caughey W S 1976 Biochemistry 15 388

    Article  CAS  Google Scholar 

  16. Manoharan P T, Alston K and Rifkind J M 1985 in Biological & inorganic copper chemistry (eds) K D Karlin and J Zubieta (New York: Adeinine Press)

    Google Scholar 

  17. Manoharan P T, Alston K and Rifkind J M 1986 J. Am. Chem. Soc. 108 7095

    Article  CAS  Google Scholar 

  18. Shelnutt J A, Alston K, Ho J-Y, Yu N-T, Yamamoto T and Rifkind J M 1986 Biochemistry 25 620

    Article  CAS  Google Scholar 

  19. Shibayama N, Ikeda-Saito M, Hori H, Itaroku K, Morimoto H and Saigo S 1995 FEBS Lett. 372 126

    Article  CAS  Google Scholar 

  20. Shibayama N, Morimoto H and Miyazaki G 1986 J. Mol. Biol. 192 323

    Article  CAS  Google Scholar 

  21. Kilmartin J V, Fogg J, Luzzana M and Rossi-Barnerdi L 1973 J. Biol. Chem. 248 7039

    CAS  Google Scholar 

  22. Geraci G, Parkhurst L J and Gibson Q H 1969 J. Biol. Chem. 244 4664

    CAS  Google Scholar 

  23. Rossi-Fanelli A, Antonini E and Caputo A 1958 Biochim. Biophys. Acta 30 608

    Article  CAS  Google Scholar 

  24. Ampulski R S, Ayers V E and Morell S A 1967 Anal. Biochem 32 163

    Article  Google Scholar 

  25. McLees B D and Caughey W S 1969 Biochemistry 7 642

    Article  Google Scholar 

  26. Makino N and Sugita Y 1982 J. Biol. Chem. 257 163

    CAS  Google Scholar 

  27. Fujii M, Hori H, Miyazaki G, Morimoto H and Yonetani T 1993 J. Biol. Chem. 268 15386

    CAS  Google Scholar 

  28. Alston K and Storm C B 1979 Biochemistry 79 4292

    Article  Google Scholar 

  29. Manoharan P T and Rogers M T 1969 in ESR of metal complexes (ed.) T F Yen (New York: Plenum Press) p. 143

    Google Scholar 

  30. Venkatesh Rao V, Balakrishnan G and Manoharan P T 2002 Biopolymers 67 156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P T Manoharan.

Additional information

Dedicated to the memory of the late Professor Bhaskar G Maiya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, S., Venkateshrao, S., Rifkind, J.M. et al. Metal ion coordination in ‘R’ and ‘T’ state hybrid hemoglobins as revealed by optical, EPR and sulphhydryl reactivity studies. J Chem Sci 117, 85–97 (2005). https://doi.org/10.1007/BF03356101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356101

Keywords

Navigation