Skip to main content

Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering and haptic feedback

  • Simulation and Augmented Reality
  • Conference paper
  • First Online:
CVRMed-MRCAS'97 (CVRMed 1997, MRCAS 1997)

Abstract

A system for simulating arthroscopic knee surgery that is based on volumetric object models derived from 3D Magnetic Resonance Imaging is presented. Feedback is provided to the user via real-time volume rendering and force feedback for haptic exploration. The system is the result of a unique collaboration between an industrial research laboratory, two major universities, and a leading research hospital. In this paper, components of the system are detailed and the current state of the integrated system is presented. Issues related to future research and plans for expanding the current system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Avila and L. Sobierajski, “A haptic interaction method for Volume Visualization”, Proc. Visualization '96, ed. R. Yagel and G. Nielson. p.p. 197–204, 1996.

    Google Scholar 

  2. D. Baraff, “Analytical methods for dynamic simulation of non-penetrating rigid bodies”, (Proc. SIGGRAPH), Computer Graphics, Vol. 24, pp. 19–28, 1989.

    Google Scholar 

  3. Boston Dynamics Incorporated: http://www.bdi.com/ simulations.html (1996).

    Google Scholar 

  4. D. Chen, “Pump it up: computer animation of a biomechanically based model of muscle using the finite element method”, Ph.D. thesis, Media Lab, MIT, 1991.

    Google Scholar 

  5. S. Cotin, H. Delingette, J.M. Clement, L. Soler, N. Ayache, and J. Marescaux “Geometrical and physical representations for a simulator of hepatic surgery”, Proceedings of Medicine Meets Virtual Reality IV, 1996.

    Google Scholar 

  6. S. Cover et al., “Interactively deformable models for surgery simulation”, IEEE Computer Graphics and Applications, Vol. 13, 6, pp. 68–75, 1993.

    Article  Google Scholar 

  7. R. Fraser, “Interactive volume rendering using advanced graphics architectures”, whitepaper: http://www/sgi.com.

    Google Scholar 

  8. B. Geiger and R. Kikinis, “Simulation of endoscopy”, Proceedings CVRMed '95, ed. Nicholas Ayache, Springer Verlag, Berlin, pp. 277–281, 1995.

    Google Scholar 

  9. S.F. Gibson, “Beyond volume rendering: visualization, haptic exploration, and physical modeling of voxel-based objects”, in Visualization in Scientific Computing, eds. R. Scateni, J. van Wijk, and P. Zanarini, Springer-Verlag, pp. 10–24, 1995.

    Google Scholar 

  10. S.F. Gibson, “3D ChainMail: a fast algorithm for deformingvolumetric objects”, in progress, 1996.

    Google Scholar 

  11. High Techsplanations: http://www.ht.com (1996).

    Google Scholar 

  12. L. Hong, et al., “3D virtual colonoscopy”, Proc. of Biomed. Vis. '95, eds. M. Loew and N. Gershon, IEEE Comp. Soc. Press, Las Alimitos, pp. 26–32, 1995.

    Google Scholar 

  13. W. Hsu, J. Hughes, H. Kaufman, “Direct Manipulation of Free-form deformations”, Computer Graphics (proc. SIGGRAPH), Vol 26, 2, pp. 177–184, 1992.

    Article  Google Scholar 

  14. I. Hunter et al, “A teleoperated microsurgical robot and associated virtual environment for eye surgery”, Presence, Vol. 2, pp. 265–280, 1993.

    Google Scholar 

  15. A. Kaufman, Volume Visualization, IEEE Comp. Soc. Press, Los Alimitos, CA, 1991.

    Google Scholar 

  16. A. Kaufman, “Volume Visualization”, CRC Handbook of Comp. Sci. and Eng., 1996.

    Google Scholar 

  17. U.G. Kuhnapfel et al, “Endosurgery simulations with KISMET: a flexible tool for surgical instrument design, operation room planning, and VR technology based abdominal surgery training”, Proc. VR'95 WORLD Conference.

    Google Scholar 

  18. W.E. Lorensen, F.A. Jolesz, and R. Kikinis, “The exploration of cross-sectional data with a virtual endoscope”, in Interactive Technology and the New Medical Paradigm for Health Care, eds. R. Satava and K. Morgan, pp. 221–230, 1995.

    Google Scholar 

  19. P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp factorization of the viewing transform”, proc. SIGGRAPH, Computer Graphics, pp. 451–457, 1994.

    Google Scholar 

  20. Y. Lee, D. Terzopoulos, and K. Waters, “Realistic modeling for facial animation”, Computer Graphics (proc. SIGGRAPH), pp. 55–62, 1995.

    Google Scholar 

  21. B. Mirtich and J. Canny, “Impulse-based simulation of rigid bodies”, proc. 1995 Workshp on Interactive 3D Graphics, pp. 181–188, April, 1995.

    Google Scholar 

  22. S.D. Pieper, “CAPS: computer-aided plastic surgery”, Ph.D. thesis, MIT, 1992.

    Google Scholar 

  23. Alan Praemer, Department of Research and Scientific Affairs, American Academy of Orthopedic Surgeons, personal communication, 1996.

    Google Scholar 

  24. Alan Praemer, from Health Care Finances Admin., Medicare data, 1992, personal communication, 1996.

    Google Scholar 

  25. S. Ramamoorthy and J. Wilhelms, “An analysis of approaches to ray-tracing curvilinear grids”, Tech. report UCSC-CRL-92-07, Comp. Res. Lab, UC Santa Cruz, 1992.

    Google Scholar 

  26. J. Samosky, “SectionView — A system for interactively specifying and visualizing sections through three-dimensional medical image data”, MS Thesis, MIT, 1993.

    Google Scholar 

  27. P. Shirley and A. Tuchman, “A polygonal approximation to direct scalar volume rendering”, proc. San Diego Workshop on Volume Visualization, pp. 63–70, 1990.

    Google Scholar 

  28. D. Terzopoulos, K. Waters, “Physically-based facial modeling, analysis, and animation”, J. Visualization and Computer Animation, Vol. 1, pp. 73–80, 1990.

    Google Scholar 

  29. D.J. Vining, A.R. Padhani, S. Wood, et al, “Virtual bronchoscopy: a new perspective for viewing the tracheobranchail tree”, Radiology 189 (P):438, 1993.

    Google Scholar 

  30. D.J. Vining et al, “Virtual colonoscopy”, Radiology 193 (P):446, 1994.

    Google Scholar 

  31. S. Wang and A. Kaufman, “Volume sculpting”, ACM Symposium on Interactive 3D Graphics, Monterey, CA, pp. 151–156, April 1995.

    Google Scholar 

  32. K. Waters, “A Muscle model for animating three-dimensional facial expression”, Computer Graphics, Vol. 21, 4, July, 1987, pp. 17–24.

    Google Scholar 

  33. L. Westover, “Footprint evaluation for volume rendering”, ACM SIGGRAPH '90, pp. 144–153, 1990.

    Google Scholar 

  34. P.L. Williams, “Interactive splatting of non-rectilinear volumes”, Proc. IEEE Visualization '92, pp. 37–44, 1992.

    Google Scholar 

  35. R Ziegler et al “A virtual reality medical training system”, Proc. CVRMed 95, ed. N. Ayache, Springer-Verlag, Berlin, pp. 282–286, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jocelyne Troccaz Eric Grimson Ralph Mösges

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibson, S. et al. (1997). Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering and haptic feedback. In: Troccaz, J., Grimson, E., Mösges, R. (eds) CVRMed-MRCAS'97. CVRMed MRCAS 1997 1997. Lecture Notes in Computer Science, vol 1205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029258

Download citation

  • DOI: https://doi.org/10.1007/BFb0029258

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62734-0

  • Online ISBN: 978-3-540-68499-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics