Skip to main content

The significance of phosphofructokinase to the regulation of carbohydrate metabolism

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 75

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 75))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, R.P., Frieden, C.: Rabbit muscle phosphofructokinase: Studies on the polymerization. The behaviour of the enzyme at pH 8, pH 6, and intermediate pH values. J. biol. Chem. 247, 7502–7509 (1972).

    Google Scholar 

  • Abrahams, S.L., Younathan, E.S.: Modulation of the kinetic properties of phosphofructokinase by ammonium ions. J. biol. Chem. 246, 2464–2467 (1971).

    Google Scholar 

  • AFTING, E.-G., Ruppert, D.: Yeast phosphofructokinase. III. Comparison of the allosteric properties of PFKS and PFKd (MgF+). Arch. Biochem. Biophys. 156, 720–729 (1973).

    Google Scholar 

  • Afting, E.-G., Ruppert, D., Hagmaier, V., Holzer, H.: Yeast phosphofructokinase: Effector-controlled conversion of an ATP-sensitive to an ATP-desensitized form. Arch. Biochem. Biophys. 143, 587–592 (1971).

    Google Scholar 

  • Afting, E.-G., Ruppert, D., Holzer, H.: Yeast phosphofructokinase. II. Dependence of the desensitization on effectors. Arch. Biochem. Biophys. 152, 433–439 (1972).

    Google Scholar 

  • Akkermann, J.W.N., Gorter, G., Sixma, J.J., Staal, Q.E.J.: Influence of Mg++, ITP4− and ATP 4− on human platelet phosphofructokinase. Biochim. biophys. Acta (Amst.) 370, 113–119 (1974).

    Google Scholar 

  • Alpers, J.B., Paulus, H., Bazylewicz, G.A.: ATP-catalyzed preconditioning of phosphofructokinase. Proc. nat. Acad. Sci. (Wash.) 68, 2937–2940 (1971).

    Google Scholar 

  • Alpers, J.B., Wu, R., Racker, E.: Regulatory mechanisms in carbohydrate metabolism. VI. Glycogen metabolism in Hela cells. J. biol. Chem. 238, 2274–2280 (1963).

    Google Scholar 

  • Atkinson, D. E.: Biological feedback control at the molecular level. Interaction between metabolite-modulated enzymes seems to be a major factor in metabolic regulation. Science 150, 851–857 (1965).

    Google Scholar 

  • Atkinson, D.E.: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7, 4030–4034 (1968).

    Google Scholar 

  • Atkinson, D.E., Hathaway, J.A., Smith, E.C.: Kinetics of regulatory enzymes: Effectors for yeast phosphofructokinase do not alter the apparent kinetic order of the reaction. Biochem. biophys. Res. Commun. 18, 1–5 (1965).

    Google Scholar 

  • Atkinson, D.E., Walton, G.M.: Kinetics of regulatory enzymes. Escherichia coli phosphofructokinase. J. biol. Chem. 240, 757–763 (1965)

    Google Scholar 

  • Atzpodien, W., Bode, H.: Purification and regulatory properties of ATP-sensitive phosphofructokinase from yeast. Europ. J. Biochem. 12, 126–132 (1970).

    Google Scholar 

  • Azam, F., Kotyk, A.: Glucose 6-phosphate as regulator of monosaccharide transport in baker's yeast. FEBS-Letters 2, 333–335 (1969).

    Google Scholar 

  • Barwell, C.J., Hess, B.: Regulation of pyruvate kinase during glyconeogenesis in Saccharomyces cerevisiae. FEBS-Letters 19, 1–4 (1971).

    Google Scholar 

  • Baumann, P., Wright, B.E.: The phosphofructokinase of Dictyostelium discoideum. Biochemistry 7, 3653–3661 (1968).

    Google Scholar 

  • Becker, H.-J., Bohnensack, R., Liese, W., Hofmann, E.: Bestimmung der Michaelis-Konstanten der Hexokinase für ATP in intakten Aszites-Tumorzellen. Acta biol. med. germ. 24, K 1–3 (1970).

    Google Scholar 

  • Becker, H.-U., Betz, A.: Membrane transport as controlling pacemaker of glycolysis in Saccharomyces carlsbergensis. Biochim. biophys. Acta (Amst.) 274, 584–597 (1972).

    Google Scholar 

  • Beitner, R., Kalant, N.: Stimulation of glycolysis by insulin. J. biol. Chem. 246, 500–503 (1971).

    Google Scholar 

  • Bendall, J.R., Taylor, A.A.: The Meyerhof quotient and the synthesis of glycogen from lactate in frog and rabbit muscle. A reinvestigation. Biochem. J. 118, 887–893 (1970).

    Google Scholar 

  • Blangy, D.: Phosphofructokinase from E. coli: Evidence for a tetrameric structure of the enzyme. FEBS-Letters 2, 109–111 (1968).

    Google Scholar 

  • Blangy, D., Buc, H., Monod, J.: Kinetics of the allosteric interaction of phosphofructokinase from Escherichia coli. J. molec. Biol. 31, 13–35 (1968).

    Google Scholar 

  • Bloxham, D.P., Clark, M.G., Holland, P.C., Lardy, H.A.: A model study of the fructose diphosphatase-phosphofructokinase substrate cycle. Biochem. J. 134, 581–587 (1973).

    Google Scholar 

  • Bloxham, D.P., Lardy, H.A.: Phosphofructokinase. In: The Enzymes. Boyer, P.D. (ed.), 3rd ed., vol. 8, p. 239–278. New York: Academic Press 1973.

    Google Scholar 

  • Bock, P.E., Frieden, C.: pH-Induced cold lability of rabbit skeletal muscle phosphofructokinase. Biochemistry 13, 4191–4196 (1974).

    Google Scholar 

  • Böhme, H.-J., Kopperschläger, G., Schulz, J., Hofmann, E.: Affinity chromatography of phos-phofructokinase using Cibacron Blue F3G-A. J. Chromatography 69, 209–214 (1972).

    Google Scholar 

  • Böhme, H.-J., Schellenberger, W., Hofmann, E.: Mikrokalorimetrische Bestimmung der thermo-dynamischen Parameter der Phosphofructokinase-Reaction. Acta biol. med. germ. 34, 15–20 (1975).

    Google Scholar 

  • Brand, I.A., Söling, H.-D.: Rat liver phosphofructokinase. Purification and characterization of its reaction mechanism. J. biol. Chem. 249, 7824–7831 (1974).

    Google Scholar 

  • Brennan, S.O., Davis, P.F., Midwinter, G.G.: Structural aspects of sheep-heart phosphofructokinase. Europ. J. Biochem. 42, 489–494 (1974).

    Google Scholar 

  • Bücher, T.: Zelluläre Koordination energietransformierender Stoffwechselketten. Angew. Chemie 71, 744 (1959).

    Google Scholar 

  • Bücher, T., Rüssmann, W.: Gleichgewicht und Ungleichgewicht im System der Glykolyse. Angew. Chemie 75, 881–893 (1963).

    Google Scholar 

  • Chance, B., Williams, G.R.: The respiratory chain and oxidative phosphorylation. Advanc. Enzymol. 17, 65–134 (1956).

    Google Scholar 

  • Clark, M.G., Bloxham, D.P., Holland, P.C., Lardy, H.A.: Estimation of the fructose 1.6-diphosphatase-phosphofructokinase substrate cycle in the flight muscle of Bombus affinis. Biochem. J. 134, 589–597 (1973).

    Google Scholar 

  • Clark, M.G., Bloxham, D.P., Holland, P.C., Lardy, H.A.: Estimation of the fructose 1.6-diphosphatase-phosphofructokinase substrate cycle and its relationship to gluconeogenesis in rat liver in vivo. J. biol. Chem. 249, 279–290 (1974a).

    Google Scholar 

  • Clark, M.G., Kneer, N.M., Bosch, A.L., Lardy, H.A.: The fructose 1.6-diphosphatase-phosphofructokinase substrate cycle. A site of regulation of hepatic gluconeogenesis by glucagon. J. biol. Chem. 249, 5695–5703 (1974b).

    Google Scholar 

  • Clarke, F.M., Masters, C.J.: On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim. biophys. Acta (Amst.) 381, 37–46 (1975).

    Google Scholar 

  • Coffee, C.J., Aaronson, R.P., Frieden, C.: Rabbit muscle phosphofructokinase: Studies of the subunit molecular weight and structure. Isolation of carboxymethylated cysteinyl peptides and sedimentation equilibrium studies. J. biol. Chem. 248, 1381–1387 (1973).

    Google Scholar 

  • Cori, C.F.: In: A Symposium on Respiratory Enzymes, p. 173. Madison, Wis.: University of Wisconsin Press 1942.

    Google Scholar 

  • Cori, C.F.: Metabolic interconversion of enzymes. Introductory remarks. In: Metabolic Interconversion of Enzymes. Wieland, O., Helmreich, E., Holzer, H. (eds.), p. 3–9. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Cori, G.T., Cori, C.F.: An unusual case of esterification in muscle. J. biol. Chem. 116, 129–132 (1936).

    Google Scholar 

  • Cottam, G.L., Uyeda, K.: Manganese substrate complexes of phosphofructokinase studied by pulsed magnetic resonance. Arch. Biochem. Biophys. 154, 683–690 (1973).

    Google Scholar 

  • Crabtree, B., Higgins, S. J., Newsholme, E.A.: The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase and fructose diphosphatase in muscles from vertebrates and invertebrates. Biochem. J. 130, 391–396 (1972).

    Google Scholar 

  • Crane, R.K., Sols, A.: The non-competitive inhibition of brain hexokinase by glucose 6-phosphate and related compounds. J. biol. Chem. 210, 597–606 (1954).

    Google Scholar 

  • Danforth, W.H.: Activation of glycolytic pathway in muscle. In: Control of Energy Metabolism. Chance, B., Estabrook, R.W., Williamson, J.R. (eds.), p. 287–297 New York-London: Academic Press 1965.

    Google Scholar 

  • Davis, B.D.: The teleonomic significance of biosynthetic control mechanisms. Cold Spr. Harb. Symp. quant. Biol. 26, 1–10 (1961).

    Google Scholar 

  • Diezel, W., Böhme, H.-J., Nissler, K., Freyer, R., Heilmann, W., Kopperschläger, G., Hofmann, E.: A new purification procedure for yeast phosphofructokinase minimizing proteolytic degradation. Aspects of subunit composition and other properties of the enzyme. Europ. J. Biochem. 38, 479–488 (1973).

    Google Scholar 

  • Diezel, W., Nissler, K., Heilmann, W., Kopperschläger, G., Hofmann, E.: Evidence for adsorbed proteolytic activity on isolated yeast phosphofructokinase. FEBS-Letters 27, 195–197 (1972).

    Google Scholar 

  • Dische, Z.: Die Bedeutung der Phosphorsäureester f ür den Ablauf und die Steuerung der Blutglykolyse. Biochem. Z. 280, 248–264 (1935).

    Google Scholar 

  • Dölken, G., Pette, D.: Turnover of several glycolytic enzymes in rabbit heart, soleus muscle and liver. Hoppe-Heylers Z. physiol. Chem. 355, 289–299 (1974).

    Google Scholar 

  • Doelle, H.W.: Kinetic characterization of phosphofructokinase from Lactobacillus casei var. rhamnosus ATCC 7469 and Lactobacillus plantarum ATCC 14917. Biochim. biophys. Acta (Amst.) 258, 404–410 (1972).

    Google Scholar 

  • Doelle, H.W.: Dimeric and tetrameric phosphofructokinase and the Pasteur effect in Escherichia coli K-12. FEBS-Letters 49, 220–222 (1974).

    Google Scholar 

  • Doelle, H.W.: ATP-sensitive and ATP-insensitive phosphofructokinase in Escherichia coli K-12. Europ. J. Biochem. 50, 335–342 (1975).

    Google Scholar 

  • Dunaway, G.A., Jr., Morris, H.P., Weber, G.: A comparative study of rat liver, muscle, and hepatoma 3G24A phosphofructokinase isozymes. Cancer Res. 34, 2209–2216 (1974).

    Google Scholar 

  • Dunaway, G.A., Jr., Segal, H.L.: A stabilizing factor for liver phosphofructokinase. Biochem. biophys. Res. Commun. 56, 689–696 (1974).

    Google Scholar 

  • Dunaway, G.A., Weber, G.: Rat liver phosphofructokinase isozymes. Arch. Biochem. Biophys. 162, 620–628 (1974a).

    Google Scholar 

  • Dunaway, G.A., Weber, G.: Effects of hormonal and nutritional changes on rates of synthesis and degradation of hepatic phosphofructokinase isozymes. Arch. Biochem. Biophys. 162, 629–637 (1974b).

    Google Scholar 

  • El-Badry, A.M., Otani, A., Mansour, T.E.: Studies on heart phosphofructokinase. Role of fructose 1.6-diphosphate in enzyme activity. J. biol. Chem. 248, 557–563 (1973).

    Google Scholar 

  • Emerk, K., Frieden, C.: The effect of trypsin treatment on rabbit muscle phosphofructokinase. Arch. Biochem. Biophys. 164, 233–240 (1974).

    Google Scholar 

  • Engelhardt, V.A., Sakov, N.E.: The mechanism of the Pasteur-effect. Biokhimiya 8, 9–36 (1943).

    Google Scholar 

  • Eyer, P., Hofer, H.W., Krystek, E., Pette, D.: Synthesis of glucose 1.6-bisphosphate by the action of crystalline rabbit muscle phosphofructokinase. Europ. J. Biochem. 20, 153–159 (1971).

    Google Scholar 

  • Ferdinandus, J., Clark, J.B.: The phosphofructokinase of Arthrobacter crystallopoietes. Biochem. J. 113, 735–736 (1969).

    Google Scholar 

  • Fishbein, R., Benkovic, P.A., Schray, K.J., Siewers, I.J., Steffens, J.J., Benkovic, S.J.: Anomeric specificity of phosphofructokinase from rabbit muscle. J. biol. Chem. 249, 6047–6051 (1974).

    Google Scholar 

  • Fodge, D.W., Rubin, H.: Activation of phosphofructokinase by stimulants of cell multiplication. Nature (Lond.) New Biol. 246, 181–183 (1973).

    Google Scholar 

  • Ford, W.C.L., Candy, D.J.: The regulation of glycolysis in perfused locust flight muscle. Biochem. J. 130, 1101–1112 (1972).

    Google Scholar 

  • Fraenkel, D.G., Kotlarz, D., Buc, H.: Two fructose 6-phosphate kinase activities in E. coli. J. biol. Chem. 248, 4865–4866 (1973).

    Google Scholar 

  • Freed, J.M.: Temperature effects on muscle phosphofructokinase of the alaskan king crab, Paralithodes camtschatica. Comp. Biochem. Physiol. 39B, 765–774 (1971).

    Google Scholar 

  • Freyer, R., Böhme, H.-J., Hofmann, E.: Effects of trypsin on yeast phosphofructokinase. Acta biol. med. germ. 32, 593–599 (1974).

    Google Scholar 

  • Freyer, R., Hofmann, E.: Eigenschaften der Phosphofruktokinase von Aszites-Tumorzellen. Biochem. Z. 343, 335–345 (1965).

    Google Scholar 

  • Freyer, R., Hofmann, E.: Beeinflussung der Phosphofructokinase aus Aszites-Tumorzellen durch verschiedene Ionen. Acta biol. med. germ. 16, 700–703 (1966).

    Google Scholar 

  • Freyer, R., Hofmann, E.: Substrat-und Effektorwirkungen auf die Phosphofruktokinase von Aszites-Tumorzellen. Acta biol. med. germ. 19, 737–749 (1967).

    Google Scholar 

  • Freyer, R., Kubel, M., Hofmann, E.: Hefe-Phosphofruktokinase. Kinetische Beziehungen zwischen substrat-und effektor-bindenden Zentren. Europ. J. Biochem. 17, 378–385 (1970a).

    Google Scholar 

  • Freyer, R., Liebe, St., Kopperschläger, G., Hofmann, E.: Hefe-Phosphofruktokinase. Wirkungen von Trypsin auf die allosterischen Eigenschaften und den molekularen Zustand des Enzyms. Europ. J. Biochem. 17, 386–392 (1970b).

    Google Scholar 

  • Freyer, R., Schellenberger, W., Eschrich, K.: A kinetic model of yeast phosphofructokinase. (In preparation, 1976.)

    Google Scholar 

  • Frieden, C.: Treatment of enzyme kinetic data II. The multisite case: comparison of allosteric models and a possible new mechanism. J. biol. Chem. 242, 4045–4052 (1967).

    Google Scholar 

  • Frieden, C.: Kinetic aspects of regulation of metabolic processes: The hysteretic enzyme concept. J. biol. Chem. 245, 5788–5799 (1970).

    Google Scholar 

  • Frunder, H., Horn, A., Achilles, W., Cumme, G.A.: Importance of metal-metabolite complexes for linking together enzyme sequences. In: Carbohydrate Metabolism in Animal Tissues and its Regulation. Dettmer, D. (ed.), p. 145–153. Berlin: VEB Verlag Volk und Gesundheit 1974.

    Google Scholar 

  • Fu, J.Y., Kemp, R.G.: Activation of muscle fructose 1.6-diphosphatase by creatine phosphate and citrate. J. biol. Chem. 248, 1124–1125 (1973).

    Google Scholar 

  • Garfinkel, D.: A simulation study of mammalian phosphofructokinase. J. biol. Chem. 241, 286–294 (1966).

    Google Scholar 

  • Garland, P.B., Randle, P.I., Newsholme, E.A.: Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature (Lond.) 200, 169–170 (1963).

    Google Scholar 

  • Gevers, W., Krebs, H.A.: The effects of adenine nucleotides on carbohydrate metabolism in pigeon-liver homogenates. Biochem. J. 98, 720–735 (1966).

    Google Scholar 

  • Goldbeter, A., Lefever, R.: Dissipative structures for an allosteric model: Application to glycolytic oscillations. Biophys. J. 12, 1302–1315 (1972).

    Google Scholar 

  • Golisch, G., Pette, D., Pichlmaier, H.: Metabolic differentiation of rabbit skeletal muscle as induced by specific innervation. Europ. J. Biochem. 16, 110–116 (1970).

    Google Scholar 

  • Griffin, C.C., Houck, B.N., Brand, L.: Purification of Escherichia coli phosphofructokinase. Biochem. biophys. Res. Commun. 27, 287–293 (1967).

    Google Scholar 

  • Gunn, J.M., Taylor, C.B.: Relationships between concentration of hepatic intermediary metabolites and induction of the key glycolytic enzymes in vivo. Biochem. J. 136, 455–465 (1973).

    Google Scholar 

  • Hanson, R.L., Rudolph, F.B., Lardy, H.A.: Rabbit muscle phosphofructokinase. The kinetic mechanism of action and the equilibrium constant. J. biol. Chem. 248, 7852–7859 (1973).

    Google Scholar 

  • Heinrich, R., Rapoport, T.A.: A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Europ. J. Biochem. 42, 89–95 (1974a).

    Google Scholar 

  • Heinrich, R., Rapoport, T.A.: A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Europ. J. Biochem. 42, 97–105 (1974b).

    Google Scholar 

  • Helmreich, E., Cori, C.F.: Regulation of glycolysis in muscle. In: Advances in Enzyme Regulation. Weber, G. (ed.), p. 91–107. Oxford: Pergamon Press 1965.

    Google Scholar 

  • Helmreich, E., Cori, C.F.: The effect of pH and temperature on the kinetics of the phosphorylase reaction. Proc. nat. Acad. Sci. (Wash.) 52, 647–654 (1964).

    Google Scholar 

  • Herrmann, K., Diezel, W., Kopperschläger, G., Hofmann, E.: Immunological evidence for non-identical subunits in yeast phosphofructokinase. FEBS-Letters 36, 190–192 (1973).

    Google Scholar 

  • Hess, B.: Koordination von Atmung und Glykolyse. In: Funktionelle und morphologische Organisation der Zelle. Karlson, P. (ed.), p. 163–193. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • Hess, B., Boiteux, A.: Control of glycolysis. In: Regulatory Functions of Biological Membranes. Järnefelt, J. (ed.), BBA Library Vol. 11, p. 148–162. Amsterdam-London-New York: Elsevier 1968.

    Google Scholar 

  • Hess, B., Boiteux, A.: Oscillatory phenomena in biochemistry. Ann. Rev. Biochem. 40, 237–258 (1971).

    Google Scholar 

  • Hess, B., Brand, K.: Enzyme and metabolite profiles. In: Control of Energy Metabolism. Chance, B., Estabrook, R.W., Williamson, J.R. (eds.), p. 111–122. New York-London: Academic Press 1965

    Google Scholar 

  • Hess, B., Johannes, K.J., Kutzbach, C., Bischofberger, H.P., Barwell, C.J., Röschlau, P.: Structure and function of pyruvate kinase. In: Reaction Mechanism and Control Properties of Phosphotransferases. Hofmann, E., Böhme, H.-J. (eds.), p. 485–504. Berlin: Akademie-Verlag 1973.

    Google Scholar 

  • Higgins, J.: Dynamics and control in cellular reactions. In: Control of Energy Metabolism. Chance, B., Estabrook, R.W., Williamson, J.R. (eds.), p. 13–46. New York-London: Academic Press 1965.

    Google Scholar 

  • Hill, D.E., Hammes, G.G.: An equilibrium binding study of the interaction of fructose 6-phosphate and fructose 1.6-bisphosphate with rabbit muscle phosphofructokinase. Biochemistry 14, 203–213 (1975).

    Google Scholar 

  • Hofer, H. W.: Influence of enzyme concentration on the kinetic behaviour of rabbit muscle phosphofructokinase. Hoppe-Seylers Z. physiol. Chem. 352, 997–1004 (1971).

    Google Scholar 

  • Hofer, H.W., Pette, D.: Verfahren einer standardisierten Extraktion und Reinigung der Phosphofruktokinase aus Kaninchen-Skeletmuskel. Hoppe-Seylers Z. physiol. Chem. 349, 995–1012 (1968a).

    Google Scholar 

  • Hofer, H.W., Pette, D.: Aktive und inaktive Formen der Phosphofruktokinase des Kaninchenske-letmuskels. Hoppe-Seylers Z. physiol. Chem. 349, 1105–1114 (1968b).

    Google Scholar 

  • Hofer, H.W., Pette, D.: Wirkungen und Wechselwirkungen von Substraten und Effektoren an der Phosphofruktokinase des Kaninchen-Skeletmuskels. Hoppe-Seylers Z. physiol. Chem. 349, 1378–1392 (1968c).

    Google Scholar 

  • Hofer, H.W., Radda, G.K.: Interaction of phosphofructokinase with the fluorescent probe 2-(N-methylaniline) naphthalene-6-sulphonate. Europ. J. Biochem. 42, 341–347 (1974).

    Google Scholar 

  • Hofmann, E.: Enzyme als Kontrolleinheiten des Stoffwechsels. Wiss. Z. Karl-Marx-Univ., Leipzig 17, 597–610 (1968).

    Google Scholar 

  • Hofmann, E., Kopperschläger, G., Schulz, J.: Some aspects of the regulation of glycolysis by phosphofructokinase. In: Carbohydrate Metabolism in Animal Tissues and its Regulation. Dettmer, D. (ed.), p. 89–104. Berlin: VEB Verlag Volk und Gesundheit 1974.

    Google Scholar 

  • Hofmann, E., Kurganov, B.I., Schellenberger, W., Schulz, J., Sparmann, G., Wenzel, K.-W., Zimmermann, G.: Association-dissociation behaviour of erythrocyte phosphofructokinase and tumour pyruvate kinase. In: Advances in Enzyme Regulation. Weber, G. (ed.), vol. 13, p. 247–277. New York-Oxford: Pergamon Press 1975

    Google Scholar 

  • Hohorst, H.J., Reim, M., Bartels, H.: Studies on the creatine kinase equilibrium in muscle and the significance of ATP and ADP levels. Biochem. biophys. Res. Commun. 7, 142–146 (1962).

    Google Scholar 

  • Holzer, H.: Über Fermentketten und ihre Bedeutung für die Regulation des Kohlenhydratstoffwechsels in lebenden Zellen. In: Biologie und Wirkung der Fermente. 4. Colloquium der Gesellschaft für Physiologische Chemie, p. 89–112. Berlin-Göttingen-Heidelberg: Springer 1953.

    Google Scholar 

  • Holzer, H., Holldorf, A.: Enzymatische Regulation von Atmung und Gärung. In: W. Ruhland, Handbuch der Pflanzenphysiologie, Bd. XII/1, S. 1092–1121. Berlin-G öttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • Hulme, E.C., Tipton, K.F.: The isotope-exchange reactions of ox heart phosphofructokinase. Biochem. J. 122, 181–187 (1971a).

    Google Scholar 

  • Hulme, E.C., Tipton, K.F.: The dependence of phosphofructokinase kinetics upon protein concentratiön. FEBS-Letters 12, 197–200 (1971b).

    Google Scholar 

  • Jauch, R., Riepertinger, C., Lynen, F.: Reinigung und Eigenschaften der Phosphofructokinase aus Hefe. Hoppe-Seylers Z. physiol. Chemie 351, 74–80 (1970).

    Google Scholar 

  • Karadsheh, N.S., Ananthanarayanan, Y., Ramaiah, A.: Stabilization of active form of rabbit liver phosphofructokinase. Biochem. biophys. Res. Commun. 57, 771–779 (1974).

    Google Scholar 

  • Karadsheh, N.S., Tejwani, G.A., Ramaiah, A.: Seduheptulose phosphate kinase activity of phosphofructokinase from the different tissues of rabbit. Biochim. biophys. Acta (Amst.) 327, 66–81 (1973).

    Google Scholar 

  • Karpatkin, S., Helmreich, E., Cori, C.: Regulation of glycolysis in muscle. II. Effect of stimulation and epinephrine on isolated frog sartorius muscle. J. biol. Chem. 239, 3139–3145 (1964).

    Google Scholar 

  • Katyare, S.S., Howland, I.L.: Defective allosteric regulation of phosphofructokinase in genetically-obese mice. FEBS-Letters 43, 17–19 (1974).

    Google Scholar 

  • Kee, A., Griffin, C.: Kinetic studies of rabbit muscle phosphofructokinase. Arch. Biochem. Biophys. 149, 361–368 (1972).

    Google Scholar 

  • Kemp, R.G.: Allosteric properties of muscle phosphofructokinase. I. Binding of magnesium adenosine triphosphate to the inhibitory site. Biochemistry 8, 3162–3168 (1969).

    Google Scholar 

  • Kemp, R.G., Krebs, E.G.: Binding of metabolites by phosphofructokinase. Biochemistry 6, 423–434 (1967).

    Google Scholar 

  • Khang, N.Q., Böhme, H.-J.: Modulation of regulatory properties of pig kidney phosphofructokinase by ammonium ions. Abstr. Commun. 9th Fed. Europ. Biochem. Soc., Budapest, 1974, p. 54.

    Google Scholar 

  • Kirby, W., Taylor, C.B.: Multiple forms of phosphofructokinase in rat tissues. Int. J. Biochem. 5, 89–95 (1974).

    Google Scholar 

  • Koerner, T.A.W., Younathan, E.S., Ashour, A.-L.E., Voll, R.J.: The fructose 6-phosphate site of phosphofructokinase. I. Tautomeric and anomeric specificity. J. biol. Chem. 249, 5749–5754 (1974).

    Google Scholar 

  • Kono, N., Uyeda, K.: Chicken liver phosphofructokinase. II. Cold inactivation. J. biol. Chem. 248, 8603–8609 (1973).

    Google Scholar 

  • Kono, N., Uyeda, K.: Chicken liver phosphofructokinase. III. Kinetic and allosteric properties. J. biol. Chem. 249, 1490–1496 (1974).

    Google Scholar 

  • Kono, N., Uyeda, K., Oliver, R.M.: Chicken liver phosphofructokinase. I. Crystallization and physico-chemical properties. J. biol. Chem. 248, 8592–8602 (1973).

    Google Scholar 

  • Kopperschläger, G., Baehr, M.L., Hofmann, E.: Zur Regulation des mehrphasigen Verlaufs des aeroben und anaeroben Glucoseverbrauches in Hefezellen. Acta biol. med. germ. 19, 691–704 (1967).

    Google Scholar 

  • Kopperschläger, G., Diezel, W., Präusche, M., Hofmann, E.: Yeast phosphofructokinase: Physical parameters, molecular weight and subunit structure. FEBS-Letters 22, 133–138 (1972a).

    Google Scholar 

  • Kopperschläger, G., Freyer, R., Diezel, W., Hofmann, E.: Some kinetic and molecular properties of yeast phosphofructokinase. FEBS-Letters 1, 137–141 (1968).

    Google Scholar 

  • Kopperschläger, G., Hofmann, E.: Zur Kinetik des aeroben und anaeroben Glucoseschwundes in Hefezellen. Hoppe-Seylers Z. physiol. Chem. 339, 90–103 (1964).

    Google Scholar 

  • Kopperschläger, G., Lorenz, I., Diezel, W., Marquardt, J., Hofmann, E.: Hefe-Phosphofructokinase: Hydrodynamische Eigenschaften, Substruktur, Aminosäurezusammensetzung und Reaktivität der SH-Gruppen. Acta biol. med. germ. 29, 561–580 (1972b).

    Google Scholar 

  • Kornberg, H.L., Smith, J.: Role of phosphofructokinase in the utilization of glucose by Escherichia coli. Nature (Lond.) 227, 44–46 (1970).

    Google Scholar 

  • Kotlarz, D., Garreau, H., Buc, H.: Regulation of the amount and of the activity of phosphofructokinase and pyruvate kinase in Escherichia coli. Biochim. biophys. Acta (Amst.) 381, 257–268 (1975).

    Google Scholar 

  • Krebs, H.A.: Renal gluconeogenesis. Advanc. Enzyme Regulation 1, 395–406 (1963).

    Google Scholar 

  • Krebs, H.A.: The Pasteur effect and the relations between respiration and fermentation. In: Essays in Biochemistry, vol. 8, p. 1–34. London-New York: Academic Press 1972.

    Google Scholar 

  • Krebs, H.A., Kornberg, H.L.: A survey of the energy transformations in living matter. Ergebn. Physiol. 49, 212–298 (1957).

    Google Scholar 

  • Krebs, H.A., Woodford, M.: Fructose 1.6-diphosphatase in striated muscle. Biochem. J. 94, 436–445 (1965).

    Google Scholar 

  • Krzanowski, J., Matschinsky, F.M.: Regulation of phosphofructokinase by phosphocreatine and phosphorylated glycolytic intermediates. Biochem. biophys. Res. Commun. 34, 816–823 (1969).

    Google Scholar 

  • Kühn, B., Jacobasch, G., Gerth, C., Rapoport, S.M.: Kinetic properties of the phosphofructokinase from erythrocytes of rats and rabbits. 1) The influence of potassium and ammonium ions and of inorganic phosphate. Europ. J. Biochem. 43, 437–442 (1974a).

    Google Scholar 

  • Kühn, B., Jacobasch, G., Gerth, C., Rapoport, S.M.: Kinetic properties of the phosphofructokinase from erythrocytes of rats and rabbits. 2) The influence of effectors under nearly cellular conditions. Europ. J. Biochem. 43, 443–450 (1974b).

    Google Scholar 

  • Kühn, B., Jacobasch, G., Rapoport, S.M.: Einige Eigenschaften der Phosphofructokinase von Rattenerythrocyten. Acta biol. med. germ. 23, 1–17 (1969).

    Google Scholar 

  • Kurata, N., Matsushima, T., Sugimura, T.: Multiple forms of phosphofructokinase in rat tissues and rat tumours. Biochem. biophys. Res. Commun. 48, 473–479 (1972).

    Google Scholar 

  • Lad, P.M., Hammes, G.G.: Physical and chemical properties of rabbit muscle phosphofructokinase cross-linked with dimethyl suberimidate. Biochemistry 13, 4530–4537 (1974).

    Google Scholar 

  • Lad, P.M., Hill, D.E., Hammes, G.G.: Influence of allosteric ligands on the activity and aggregation of rabbit muscle phosphofructokinase. Biochemistry 12, 4303–4309 (1973).

    Google Scholar 

  • Lardy, H.: Phosphofructokinases. In: The Enzymes. Boyer, P.D., Lardy, H., Myrbäck, K. (eds.), p. 67–74. New York: Academic Press 1962.

    Google Scholar 

  • Lardy, H.A., Parks, R.E., Jr.: Influence of ATP concentration on rates of some phosphorylation reactions. In: Enzymes: Units of Biological Structure and Function. Gaebler, O.H. (ed.), Henry Ford Hospital, International Symposium, p. 584–587. New York: Academic Press 1956.

    Google Scholar 

  • Layzer, R.B., Conway, M.M: Multiple isoenzymes of human phosphofructokinase. Biochem. biophys. Res. Commun. 40, 1259–1265 (1970).

    Google Scholar 

  • Layzer, R.B., Rowland, L.P., Bank, W.J.: Physical and kinetic properties of human phosphofructokinase from skeletal muscle and erythrocytes. J. biol. Chem. 244, 3823–3831 (1969).

    Google Scholar 

  • Layzer, R.B., Rowland, L.P., Ranney, H.M.: Muscle phosphofructokinase deficiency. Arch. Neurol. (Chic.) 17, 512–523 (1967).

    Google Scholar 

  • Lee, L.M.: Purification and some properties of phosphofructokinase from human erythrocytes. Arch. Biochem. Biophys. 148, 607–613 (1972).

    Google Scholar 

  • Leonard, K.R., Walker, J.A.: The self-association of rabbit-muscle phosphofructokinase. Europ. J. biol. Chem. 26, 442–448 (1972).

    Google Scholar 

  • Liebe, St., Diezel, W., Kopperschläger, G., Hofmann, E.: Hefe-Phosphofruktokinase: Substratund Effektorwirkungen auf das Assoziations-und Dissoziationsverhalten. Acta biol. med. germ. 28, 39–50 (1972).

    Google Scholar 

  • Lindell, T.J., Stellwagen, E.: Purification and properties of phosphofructokinase from yeast. J. biol. Chem. 243, 907–912 (1968).

    Google Scholar 

  • Ling, K.H., Marcus, F., Lardy, H.A.: Purification and some properties of rabbit skeletal muscle phosphofructokinase. J. biol. Chem. 240, 1893–1899 (1965).

    Google Scholar 

  • Ljungström, O., Hjelmquist, G., Engström, L.: Phosphorylation of purified rat liver pyruvate kinase by cyclic 3′.5 ′-AMP-stimulated protein kinase. Biochim. biophys. Acta (Amst.) 358, 289–298 (1974).

    Google Scholar 

  • Lohmann, K., Graetz, H., Langen, P.: The metabolism of the small intestine. In: Current Aspects of Biochemical Energetics. Kaplan, N.O., Kennedy, E.P. (eds.), p. 111–126. London-New York: Academic Press 1966.

    Google Scholar 

  • Lonberg-Holm, K.K.: A direct study of intracellular glycolysis in Ehrlich's ascites tumour. Biochim. biophys. Acta (Amst.) 35, 464–472 (1959).

    Google Scholar 

  • Lorenson, M.Y., Mansour, T.E.: Studies on heart phosphofructokinase. Reversibility of the reaction. J. biol. Chem. 243, 4677–4682 (1968).

    Google Scholar 

  • Lorenson, M.Y., Mansour, T.E.: Studies on heart phosphofructokinase. Binding properties of native enzyme and of enzyme desensitized to allosteric control. J. biol. Chem. 244, 6420–6431 (1969).

    Google Scholar 

  • Lorenz, I.: Kinetische Untersuchungen an der Hefe-Phosphofructokinase mit Hilfe der pH-Stat-Methode. Wiss. Z. Karl-Marx-Univ., Leipzig 21, 551–556 (1972).

    Google Scholar 

  • Lowry, O.H., Passonneau, J.V.: Kinetic evidence for multiple binding sites on phosphofructokinase. J. biol. Chem. 241, 2268–2279 (1966).

    Google Scholar 

  • Lynen, A., Afting, E.-G., Holzer, H.: Yeast phosphofructokinase. IV. Reversibility of the ATP desensitization. FEBS-Letters 30, 71–73 (1973).

    Google Scholar 

  • Lynen, F.: Über den aeroben Phosphatbedarf der Hefe. Ein Beitrag zur Kenntnis der Pasteurschen Reaktion. Justus Liebigs Ann. Chem. 546, 120–141 (1941).

    Google Scholar 

  • Lynen, F., Hartmann, G., Netter, K.F., Schuegraf, A.: Phosphate turnover and Pasteur effect. In: Ciba Foundation Symposium on the Regulation of Cell Metabolism. Wolstenholme, G.E.W., O'Connor, CM. (eds.), p. 256–273. London: J. & A. Churchill 1959.

    Google Scholar 

  • Mansour, T.E.: Studies on heart phosphofructokinase; purification, inhibition, and activation. J. biol. Chem. 238, 2285–2292 (1963).

    Google Scholar 

  • Mansour, T.E.: Phosphofructokinase activity in skeletal muscle extracts following administration of epinephrine. J. biol. Chem. 247, 6059–6066 (1972a).

    Google Scholar 

  • Mansour, T.E.: Phosphofructokinase. In: Current Topics in Cellular Regulation. Horecker, B.L., Stadtman, E.R. (eds.), vol. 5, p. 1–46. New York-London: Academic Press 1972.

    Google Scholar 

  • Mansour, T.E., Ahlfors, C.E.: Studies on heart phosphofructokinase. Some kinetic and physical properties of the crystalline enzyme. J. biol. Chem. 243, 2523–2533 (1968).

    Google Scholar 

  • Mansour, T.E., Mansour, J.M.: Effects of serotonin (5-hydroxytryptamine) and adenosine 3′,5′-phosphate on phosphofructokinase from the liver fluke Fasciola hepatica. J. biol. Chem. 237, 629–634 (1962).

    Google Scholar 

  • Mansour, T.E., Wakid, N., Sprouse, H.M.: Studies on heart phosphofructokinase. Purification, crystallisation, and properties of sheep heart phosphofructokinase. J. biol. Chem. 241, 1512–1521 (1966).

    Google Scholar 

  • Massey, T.H., Deal, W.C. Jr.: Unusual, metabolite-dependent solubility properties of phosphofructokinase. J. biol. Chem. 248, 56–62 (1973).

    Google Scholar 

  • Mavis, R.D., Stellwagen, E.: The role of cations of yeast phosphofructokinase catalysis. J. biol. Chem. 245, 674–680 (1970).

    Google Scholar 

  • Mazón, M.J., Gancedo, J.M., Gancedo, C.: Identification of an unusual phosphofructokinase in the red yeast Rhodotorula glutinis. Biochem. biophys. Res. Commun. 61, 1304–1309 (1974).

    Google Scholar 

  • McGilvery, R.W., Murray, T.W.: Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle. J. biol. Chem. 249, 5845–5850 (1974).

    Google Scholar 

  • Meienhofer, M.C., Carayon, P., Gacon, G.: Les isozymes de la phosphofructokinase humaine. Biochimie 54, 1399–1403 (1972).

    Google Scholar 

  • Meyerhof, O.: Die Energieumwandlungen im Muskel. VI. Über den Ursprung der Kontraktionswärme. Pflügers Arch. ges. Physiol. 195, 22–74 (1922).

    Google Scholar 

  • Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transition: a plausible model. J. molec. Biol. 12, 88–118 (1965).

    Google Scholar 

  • Morgan, H.E., Neely, J.R., Brineaux, J.P., Park, C.R.: Regulation of glucose transport. In: Control of Energy Metabolism. Chance, B., Estabrook, R.W., Williamson, J.R. (eds.), p. 347–355. New York: Academic Press 1965.

    Google Scholar 

  • Muntz, J.A.: The role of potassium and ammonium ions in alcoholic fermentation. J. biol. Chem. 171, 653–665 (1947).

    Google Scholar 

  • Muntz, J.A.: Partial purification and some properties of brain phosphofructokinase. Arch. Biochem. Biophys. 42, 435–445 (1953).

    Google Scholar 

  • Nakatsu, K., Mansour, T.E.: Effect of perfusion with different substrates and with isoproterenol on phosphofructokinase activity in the isolated guinea pig heart. Molec. Pharmacol. 9, 405–413 (1973).

    Google Scholar 

  • Nakatsu, K., Mansour, T.E.: Reversible changes in the stability of phosphofructokinase in rat diaphragms. Biochem. biophys. Res. Commun. 60, 1331–1337 (1974).

    Google Scholar 

  • Negelein, E.: Methode zur Gewinnung des A-Proteins der Gärungsfermente. Biochem. Z. 287, 329–333 (1936).

    Google Scholar 

  • Newsholme, E.A., Crabtree, B.: The role of fructose 1.6-diphosphatase in the regulation of glycolysis in skeletal muscle. FEBS-Letters 7, 195–198 (1970).

    Google Scholar 

  • Newsholme, E.A., Crabtree, B., Higgins, S.J., Thornton, S.D., Start, C.: The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem. J. 128, 89–97 (1972).

    Google Scholar 

  • Newsholme, E.A., Gevers, W.: Control of glycolysis and gluconeogenesis in liver and kidney cortex. In: Vitamins and Hormones. Harris, R.S., Wool, I.G., Loraine, J.A. (eds.), vol. 25, p. 1–87. New York-London: Academic Press 1967.

    Google Scholar 

  • Newsholme, E.A., Randle, P.J.: Regulation of glucose uptake by muscle. 5. Effects of anoxia, insulin, adrenaline and prolonged starving on concentrations of hexose phosphates in isolated rat diaphragm and perfused isolated rat heart. Biochem. J. 80, 655–662 (1961).

    Google Scholar 

  • Nichol, L.W., Jackson, W.J.H., Winzor, D. J.: A theoretical study of the binding of small molecules to a polymerizing system. A model for allosteric effects. Biochemistry 6, 2449–2456 (1967).

    Google Scholar 

  • Nissler, K., Friedrich, S., Hofmann, E.: Präparative Darstellung homogener Phosphofruktokinase aus Hefe. Acta biol. med. germ. 28, 739–749 (1972).

    Google Scholar 

  • Odeide, R., Dupuis, B., Guilloton, M., Rosenberg, A.J.: Étude d'un enzyme allostérique à deux substrats: la phosphofructokinase du muscle de rat. III. Propriétés cin étiques. Bull. Soc. Chim. biol. (Paris) 51, 47–54 (1969a).

    Google Scholar 

  • Odeide, R., Dupuis, B., Guilloton, M., Savany, A., Rosenberg, A.J.: Étude d'un enzyme allostérique à deux substrats: la phosphofructokinase du muscle de rat. IV. Action conjugu ée de deux inhibiteurs allostériques ATP et citrate. Bull. Soc. Chim. biol. (Paris) 51, 1199–1210 (1969b).

    Google Scholar 

  • Odeide, R., Guilloton, M., Dupuis, B., Ravon, D., Rosenberg, A.J.: Étude d'un enzyme allostérique à deux substrats: la phosphofructokinase du muscle de rat. I. Préparation et cristallisation de l'enzyme. Bull. Soc. Chim. biol. (Paris) 50, 2023–2033 (1968a).

    Google Scholar 

  • Odeide, R., Guilloton, M., Dupuis, B., Rosenberg, A.J.: Étude d'un enzyme allostérique à deux substrats: la phosphofructokinase du muscle de rat. II. Propriétés cin étiques. Bull. Soc. Chim. biol. (Paris) 50, 2035–2052 (1968b).

    Google Scholar 

  • Özand, P., Narahara, H.T.: Regulation of glycolysis in muscle. III. Influence of insulin, epinephrine, and contraction on phosphofructokinase activity in frog skeletal muscle. J. biol. Chem. 239, 3146–3152 (1964).

    Google Scholar 

  • Orevi, M., Gorin, E., Shafrir, E.: Adaptive changes of phosphofructokinase and aldolase in adipose tissue. Europ. J. Biochem. 30, 418–426 (1972).

    Google Scholar 

  • Ostern, P., Guthke, I.A., Terszakowec, J.: Über die Bildung des Hexose-monophosphorsäure-esters und dessen Umwandlung in Fructose-diphosphorsäure-ester im Muskel. Hoppe-Seylers Z. physiol. Chem. 243, 9–37 (1936).

    Google Scholar 

  • Otto, M., Heinrich, R., Kühn, B., Jacobasch, G.: A mathematical model for the influence of fructose 6-phosphate, ATP, potassium, ammonium and magnesium on the phosphofructokinase from rat erythrocytes. Europ. J. Biochem. 49, 169–178 (1974).

    Google Scholar 

  • Paetkau, V.H., Lardy, H.A.: Phosphofructokinase. Correlation of physical and enzymatic properties. J. biol. Chem. 242, 2035–2042 (1967).

    Google Scholar 

  • Paetkau, V.H., Younathan, E.S., Lardy, H.A.: Phosphofructokinase: Studies on the subunit structure. J. molec. Biol. 33, 721–736 (1968).

    Google Scholar 

  • Park, C.R., Morgan, H.E., Henderson, J.J., Regen, D.M., Cadenas, E., Post, R.L.: The regulation of glucose uptake in muscle as studied in the perfused rat heart. Recent Progr. Hormone Res. 17, 493–538 (1961).

    Google Scholar 

  • Parmeggiani, A., Bowman, R.H.: Regulation of phosphofructokinase activity by citrate in normal and diabetic muscle. Biochem. biophys. Res. Commun. 12, 268–273 (1963).

    Google Scholar 

  • Parmeggiani, A., Krebs, E.G.: Crystallization of rabbit muscle phosphofructokinase. Biochem. biophys. Res. Commun. 19, 89–94 (1965).

    Google Scholar 

  • Parmeggiani, A., Luft, J.H., Love, D.S., Krebs, E.G.: Crystallization and properties of rabbit muscle phosphofructokinase. J. biol. Chem. 241, 4625–4637 (1966).

    Google Scholar 

  • Passonneau, J.V., Lowry, O.H.: Phosphofructokinase and the Pasteur effect. Biochem. biophys. Res. Commun. 7, 10–15 (1962).

    Google Scholar 

  • Passonneau, J.V., Lowry, O.H.: P-Fructokinase and the control of the citric acid cycle. Biochem. biophys. Res. Commun. 13, 372–379 (1963).

    Google Scholar 

  • Pavelich, M.J., Hammes, G.G.: Aggregation of rabbit muscle phosphofructokinase. Biochemistry 12, 1408–1414 (1973).

    Google Scholar 

  • Pogell, B.M., Tanaka, A., Siddons, R.C.: Natural activators for liver fructose 1.6-diphosphatase and the reversal of adenosine 5′-monophosphate inhibition by muscle phosphofructokinase. J. biol. Chem. 243, 1356–1367 (1968).

    Google Scholar 

  • Pritchard, P.J., Lee, D.J.W.: The regulation of chick (Gallus domesticus) mucosal phosphofructokinase by ammonium and citrate ions. Int. J. Biochem. 5, 655–660 (1974).

    Google Scholar 

  • Racker, E.: History of the Pasteur effect and its pathobiology. Mol. Cell. Biochem. 5, 17–23 (1974).

    Google Scholar 

  • Ramaiah, A., Tejwani, G.A.: Interconvertible forms of phosphofructokinase of rabbit liver. The role of effectors on the interconversion. Europ. J. Biochem. 39, 183–192 (1973).

    Google Scholar 

  • Rapoport, T.A., Heinrich, R., Jacobasch, G., Rapoport, S.M.: A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Europ. J. Biochem. 42, 107–120 (1974).

    Google Scholar 

  • Reeves, R.E., Sols, A.: Regulation of Escherichia coli phosphofructokinase in situ. Biochem. biophys. Res. Commun. 50, 459–466 (1973).

    Google Scholar 

  • Reeves, R.E., South, D.J., Blytt, H.J., Warren, L.G.: Pyrophosphate: D-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J. biol. Chem. 249, 7737–7741 (1974).

    Google Scholar 

  • Regen, D.M., Davis, W.W., Morgan, H.E., Park, C.R.: The regulation of hexokinase and phosphofructokinase activity in heart muscle. Effects of alloxan diabetes, growth hormone, cortisol, and anoxia. J. biol. Chem. 239, 43–49 (1964).

    Google Scholar 

  • Reich, J.G., Sel'kov, E.E.: Mathematical analysis of metabolic networks. FEBS-Letters 40, Suppl., 119–127 (1974).

    Google Scholar 

  • Ricard, J., Mouttet, C., Nari, J.: Subunit interactions in enzyme catalysis. Kinetic models for one-substrate polymeric enzymes. Europ. J. Biochem. 41, 479–497 (1974).

    Google Scholar 

  • Salas, M.L., Salas, J., Sols, A.: Desensitization of yeast phosphofructokinase to ATP inhibition by treatment by trypsin. Biochem. biophys. Res. Commun. 31, 461–466 (1968).

    Google Scholar 

  • Salas, M.L., Viñuela, E., Salas, M., Sols, A.: Citrate inhibition of phosphofructokinase and the Pasteur effect. Biochem. biophys. Res. Commun. 19, 371–376 (1965).

    Google Scholar 

  • Sauermann, G.: Über die Phosphofructokinase-Rückreaktion in Ascites-Tumorzellen. Hoppe-Seylers Z. physiol. Chem. 355, 459–465 (1974a).

    Google Scholar 

  • Sauermann, G.: Zur Kinetik der 6-Phosphofructokinase-Rückreaktion. Hoppe-Seylers Z. physiol. Chem. 355, 1058–1062 (1974b).

    Google Scholar 

  • Schulz, J.: Glykolytischer Flux bei Hemmung der Atmungskettenphosphorylierung. Wiss. Z. Karl-Marx-Univ. Leipzig 17, 611–621 (1968).

    Google Scholar 

  • Sel'kov, E.E.: Non-linear theory of regulation of the key step of glycolysis. Studia biophysica 33, 167–176 (1972).

    Google Scholar 

  • Serrano, R., Delafuente, G.: Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol. Cell. Biochem. 5, 161–171 (1974).

    Google Scholar 

  • Setlow, B., Mansour, T.E.: Studies on heart phosphofructokinase. Binding of cyclic adenosine 3′,5′-monophosphate, adenosine monophosphate, and of hexose phosphates to the enzyme. Biochemistry 11, 1478–1486 (1972).

    Google Scholar 

  • Shen, L.C., Fall, L.F., Walton, G.M., Atkinson, D.E.: Interaction between energy charge and metabolite modulation in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvate dehydrogenase. Biochemistry 7, 4041–4045 (1968).

    Google Scholar 

  • Sigel, P., Pette, D.: Intracellular localization of glycogenolytic and glycolytic enzymes in white and red rabbit skeletal muscle. A gel film method for coupled enzyme reactions in histochemistry. J. Histochem. Cytochem. 17, 225–237 (1969).

    Google Scholar 

  • Sillero, A., Sillero, M.A.G., Sols, A.: Regulation of the level of key enzymes of glycolysis and gluconeogenesis in liver. Europ. J. Biochem. 10, 351–354 (1969).

    Google Scholar 

  • Singhal, R.L., Valadares, J.R.E., Ling, G.M.: Metabolic control mechanisms in mammalian systems. I. Hormonal induction of phosphofructokinase in the rat uterus. J. biol. Chem. 242, 2593–2598 (1967).

    Google Scholar 

  • Stifel, F.B., Taunton, O.D., Greene, H.-L., Herman, R.H.: Rapid reciprocal changes in rat tissue enzyme activities following epinephrine injection. J. biol. Chem. 249, 7240–7244 (1974).

    Google Scholar 

  • Stone, D.B., Mansour, T.E.: Phosphofructokinase from the liver fluke. I. Activation by adenosine 3′.5′-phosphate and by serotonin. Molec. Pharmacol. 3, 161–176 (1967).

    Google Scholar 

  • Storey, K.B., Hochatka, P.W.: Activation of muscle glycolysis: a role for creatine phosphate in phosphofructokinase regulation. FEBS-Letters 46, 337–339 (1974a).

    Google Scholar 

  • Storey, K.B., Hochatka, P.W.: Enzymes of energy metabolism from a vertebrate facultative anaerobe. Pseudemys scripta. Turtle heart phosphofructokinase. J. biol. Chem. 249, 1417–1422 (1974b).

    Google Scholar 

  • Sumi, T., Ui, M.: Kinetic studies of phosphofructokinase from Ehrlich ascites tumour cells. Biochim. biophys. Acta (Amst.) 276, 19–30 (1972).

    Google Scholar 

  • Taketa, K., Pogell, B.M.: Allosteric inhibition of rat liver fructose 1.6-diphosphatase by adenosine 5′-monophosphate. J. biol. Chem. 240, 651–662 (1965).

    Google Scholar 

  • Tanaka, T., An, T., Sakaue, Y.: Studies on multimolecular forms of phosphofructokinase in rat tissues. J. Biochem. 69, 609–612 (1971).

    Google Scholar 

  • Tarui, S., Kono, N., Nasch, T., Nishikawa, M.: Enzymatic basis for the coexistence of myopathy and hemolytic desease in inherited muscle phosphofructokinase deficiency. Biochem. biophys. Res. Commun. 34, 77–83 (1969).

    Google Scholar 

  • Taucher, M.: Substruktur und molekulare Eigenschaften von Hefe-Phosphofruktokinase nach limitierter Proteolyse. Thesis, Dept. of Medicine, Karl-Marx-Universität, Leipzig, (1974).

    Google Scholar 

  • Taunton, O.D., Stifel, F.B., Greene, H.L., Herman, R.H.: Rapid reciprocal changes of rat hepatic glycolytic enzymes and fructose 1.6-diphosphatase following glucagon and insulin injection in vivo. Biochem. biophys. Res. Commun. 48, 1663–1670 (1972).

    Google Scholar 

  • Taunton, O.D., Stifel, F.B., Greene, H.L., Herman, R.H.: Rapid reciprocal changes in rat hepatic glycolytic enzyme and fructose diphosphatase activities following insulin and glucagons injection. J. biol. Chem. 249, 7228–7239 (1974).

    Google Scholar 

  • Tejwani, G.A., Kaur, J., Ananthanarayanan, M., Ramaiah, A.: Concentrations of various effectors and substrates of phosphofructokinase in the jejunum of rat and their relation to the lack of Pasteur effect in this tissue. Biochim. biophys, Acta (Amst.) 370, 120–129 (1974).

    Google Scholar 

  • Tejwani, G.A., Ramaiah, A., Ananthanarayanan, M.: Regulation of glycolysis in muscle. The role of ammonium and synergism among the positive effectors of phosphofructokinase. Arch. Biochem. Biophys. 158, 195–199 (1973).

    Google Scholar 

  • Trivedi, B., Danforth, W.H.: Effect of pH on the kinetics of frog muscle phosphofructokinase. J. biol. Chem. 241, 4110–4112 (1966).

    Google Scholar 

  • Tsai, M.Y., Kemp, R.G.: Hybridization of rabbit muscle and liver phosphofructokinase. Arch. Biochem. Biophys. 150, 407–411 (1972).

    Google Scholar 

  • Tsai, M.Y., Kemp, R.G.: Isozymes of rabbit phosphofructokinase. Electrophoretic and immunochemical studies. J. biol. Chem. 248, 785–792 (1973).

    Google Scholar 

  • Tsai, M.Y., Kemp, R.G.: Rabbit brain phosphofructokinase. Comparison of regulatory properties with those of other phosphofructokinase isozymes. J. biol. Chem. 249, 6590–6596 (1974).

    Google Scholar 

  • Ui, M.: A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochim. biophys. Acta (Amst.) 124, 310–322 (1966).

    Google Scholar 

  • Uyeda, K.: Studies on the reaction mechanism of skeletal muscle phosphofructokinase. J. biol. Chem. 245, 2268–2275 (1970).

    Google Scholar 

  • Uyeda, K.: Studies on the fructose 1-phosphate kinase activity of rabbit muscle phosphofructokinase. J. biol. Chem. 247, 1692–1698 (1972).

    Google Scholar 

  • Uyeda, K., Kurooka, S.: Crystallization and properties of phosphofructokinase from Clostridium Pasteurianum. J. biol. Chem. 245, 3315–3324 (1970).

    Google Scholar 

  • Uyeda, K., Luby, L.J.: Studies on the effect of fructose diphosphatase on phosphofructokinase. J. Biol. Chem. 249, 4562–4570 (1974).

    Google Scholar 

  • Vaughan, H., Thornton, S.D., Newsholme, E.A.: The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase. fructose diphosphatase and pyruvate kinase from various muscles. Biochem J. 132, 527–535 (1973).

    Google Scholar 

  • Vinuela, E., Salas, M.L., Salas, M., Sols, A.: Two interconvertible forms of yeast phosphofructokinase with different sensitivity to endproduct inhibition. Biochem. biophys. Res. Commun. 15, 243–249 (1964).

    Google Scholar 

  • Weber, G.: Integrative action of insulin on liver carbohydrate metabolism. In: Carbohydrate Metabolism in Animal Tissues and its Regeneration. Dettmer, D. (ed.), Berlin: Akademie Verlag 1974a.

    Google Scholar 

  • Weber, G.: Ordered and specific pattern of gene expression in differentiating and in neoplastic cells. In: Differentiation and Control of Malignancy of Tumour Cells. Nakahara, W. et al. (eds.), p. 151–180. Tokyo: University Tokyo Press 1974b.

    Google Scholar 

  • Weber, G., Convery, H.J.H., Lea, M.A., Stamm, N.B.: Feedback inhibition of key glycolytic enzymes in liver: action of free fatty acids. Science 134, 1357–1360 (1966a).

    Google Scholar 

  • Weber, G., Lea, M.A., Convery, J.H., Stamm, N.B.: Regulation of gluconeogenesis and glycolysis: studies of mechanisms controlling enzyme activity. In: Advances in Enzyme Regulation. Weber, G. (ed.), vol. 5, p. 257–298. Oxford: Pergamon Press 1967.

    Google Scholar 

  • Weber, G., Singhal, R.L., Stamm, B., Lea, M.A., Fisher, E.A.: Synchronous behaviour pattern of key glycolytic enzymes: glucokinase, phosphofructokinase, and pyruvate kinase. In: Advances in Enzyme Regulation. Weber, G. (ed.), vol. 4, p. 59–81. Oxford-New York: Pergamon Press 1966b.

    Google Scholar 

  • Wenzel, K.W., Gauer, J., Zimmermann, G., Hofmann, E.: Purification of human erythrocyte phosphofructokinase. FEBS-Letters 19, 281–284 (1972).

    Google Scholar 

  • Wenzel, K.-W., Kurganov, B.I., Zimmermann, G., Yakovlev, V.A., Schellenberger, W., Hofmann, E.: Self-association of human erythrocyte phosphofructokinase. Europ. J. Biochem., 61, 181–190 (1976).

    Google Scholar 

  • Wenzel, K.-W., Zimmermann, G., Gauer, J., Diezel, W., Liebe, St., Hofmann, E.: Evidence for different oligomeric forms of human erythrocyte phosphofructokinase. FEBS-Letters 19, 285–289 (1972).

    Google Scholar 

  • Whitehead, E.: The regulation of enzyme activity and allosteric transition. Progr. Biophys. molec. Biol. 21, 321–397 (1970).

    Google Scholar 

  • Wieker, H.-J., Hess, B.: A computer program for the determination of kinetic parameters from sigmoidal steady-state kinetics. In: Analysis and Simulation, p. 211–217. Amsterdam: North-Holland 1972.

    Google Scholar 

  • Wilgus, H., Pringle, J.R., Stellwagen, E.: The molecular weight of the polypeptide chains of yeast phosphofructokinase. Biochem. biophys. Res. Commun. 44, 89–93 (1971).

    Google Scholar 

  • Wilhelm, G., Schulz, J., Hofmann, E.: pH-Abhängigkeit von Glykolyse und Atmung in Ehrlich-Ascitestumorzellen. Acta biol. med. germ. 29, 1–16 (1972).

    Google Scholar 

  • Williamson, J.R.: Metabolic control in the perfused rat heart. In: Control of Energy Metabolism. Chance, B., Estabrook, R.W., Williamson, J.R. (eds.), p. 333–346. New York-London: Academic Press 1965.

    Google Scholar 

  • Wimhurst, J.M., Manchester, K.L.: Induction and suppression of the key enzymes of glycolysis and gluconeogenesis in isolated perfused rat liver in response to glucose, fructose and lactate. Biochem. J. 134, 143–156 (1973).

    Google Scholar 

  • Wu, R.: Control mechanism of glycolysis in Ehrlich ascites tumour cells. J. biol. Chem. 240, 2827–2832 (1965a).

    Google Scholar 

  • Wu, R.: On the control of glycolysis in Novikoff ascites tumour cells. In: Control of energy Metabolism. Chance, B., Estabrook, R.W., Williamson, J. (eds.), p. 187–195. New York: Academic Press 1965 b.

    Google Scholar 

  • Wurster, B., Hess, B.: Anomeric specificity of fructose 6-phosphate kinase (EC 2.7.1.11) from rabbit muscle. FEBS-Letters 38, 257–260 (1974).

    Google Scholar 

  • Zimmermann, G., Wenzel, K.-W., Gauer, J., Hofmann, E.: Studies on the association behaviour of human erythrocyte phosphofructokinase. Europ. J. Biochem. 40, 501–505 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this chapter

Cite this chapter

HOFMANN, E. (1976). The significance of phosphofructokinase to the regulation of carbohydrate metabolism. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 75. Reviews of Physiology, Biochemistry and Pharmacology, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030484

Download citation

  • DOI: https://doi.org/10.1007/BFb0030484

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07639-1

  • Online ISBN: 978-3-540-38190-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics