Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 123))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe JY, Fuji Y, Kuwamura Y, Hizawa K (1987) Fiber differentiation and myosin expression in regenerating rat muscles. Acta Pathol Jpn 37:1537–1547

    PubMed  Google Scholar 

  • Alameddine HS, Dehaupas M, Fardeau M (1989) Regeneration of skeletal muscle fibers from autologous satellite cells multiplied in vitro. An experimental model for testing cultured cell myogenicity. Muscle Nerve 12:544–555

    Article  PubMed  Google Scholar 

  • Alameddine HS, Hantai D, Dehaupas M, Fardeau M (1991) Role of persisting basement membrane in the reorganization of myofibers originating from myogenic cell grafts in the rat. Neuromuscul Disord 1:143–152

    Article  PubMed  Google Scholar 

  • Allbrook DB, Han MF, Hellmuth AE (1971) Population of muscle satellite cells in relation to age and mitotic activity. Pathology 3:223–243

    Google Scholar 

  • Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138:311–315

    Article  PubMed  Google Scholar 

  • Allen RE, Rankin LL (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc Soc Exp Biol Med 194:81–86

    PubMed  Google Scholar 

  • Allen RE, McAllister PK, Masak KC (1980) Myogenic potential of satellite cells in skeletal muscle of old rats. A brief note. Mech Ageing Dev 13:105–109

    Article  Google Scholar 

  • Allen RE, McAllister PK, Masak KC, Anderson GR (1982) Influence of age on accumulation of alpha-actin in satellite-cell-derived myotubes in vitro. Mech Ageing Dev 18:89–95

    Article  PubMed  Google Scholar 

  • Allen RE, Masak KC, McAllister PK, Merkel RA (1983) Effect of growth hormone, testosterone and serum concentration on actin synthesis in cultured satellite cells. J Anim Sci 56:833–837

    PubMed  Google Scholar 

  • Allen RE, Dodson MV, Luiten LS (1984) Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor. Exp Cell Res 152:154–160

    Article  PubMed  Google Scholar 

  • Allen RE, Luiten LS, Dodson MV (1985) Effect of insulin and linoleic acid on satellite cell differentiation. J Anim Sci 60:1571–1579

    PubMed  Google Scholar 

  • Alterio J, Courtois Y, Robelin J, Bechet D, Martelly I (1990) Acidic and basic fibroblast growth factor mRNAs are expressed by skeletal muscle satellite cells. Biochem Biophys Res Commun 166:1205–1212

    Article  PubMed  Google Scholar 

  • Anderson JE, Liu L, Kardami E (1991) Distinctive patterns of basic fibroblast growth factor (bFGF) distribution in degenerating and regenerating areas of dystrophic (mdx) striated muscles. Dev Biol 147:96–109

    Article  PubMed  Google Scholar 

  • Appell HJ, Forsberg S, Hollmann W (1988) Satellite cell activation in human skeletal muscle after training: evidence for muscle fiber neoformation. Int J Sports Med 9:297–299

    PubMed  Google Scholar 

  • Armand O, Boutineau AM, Mauger A, Pautou MP, Kieny M (1983) Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72:163–181

    PubMed  Google Scholar 

  • Bader CR, Bertrand D, Cooper E, Mauro A (1988) Membrane currents of rat satellite cells attached to intact skeletal muscle fibers. Neuron 1:237–240

    Article  PubMed  Google Scholar 

  • Barbieri G, De Angelis L, Feo S, Cossu G, Giallongo A (1990) Differential expression of muscle-specific enolase in embryonic and fetal myogenic cells during mouse development. Differentiation 45:179–184

    PubMed  Google Scholar 

  • Beermann DH, Liboff M, Wilson DB, Hood LF (1983) Effects of exogenous thyroxine and growth hormone on satellite cell and myonuclei populations in rapidly growing rat skeletal muscle. Growth 47:426–436

    PubMed  Google Scholar 

  • Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–235

    PubMed  Google Scholar 

  • Bischoff R (1986a) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    Article  PubMed  Google Scholar 

  • Bischoff R (1986b) A satellite cell mitogen from crushed adult muscle. Dev Biol 115:140–147

    Article  PubMed  Google Scholar 

  • Bischoff R (1989) Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc 21:S164–S172

    PubMed  Google Scholar 

  • Bischoff R (1990a) Cell cycle commitment of rat muscle satellite cells. J Cell Biol 111:201–207

    Article  PubMed  Google Scholar 

  • Bischoff R (1990b) Interaction between satellite cells and skeletal muscle fibers. Development 109:943–952

    PubMed  Google Scholar 

  • Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 80:4856–4860

    PubMed  Google Scholar 

  • Bonner PH, Hauschka SD (1974) Clonal analysis of vertebrate myogenesis. I. Early developmental events in the chick limb. Dev Biol 37:317–328

    Article  PubMed  Google Scholar 

  • Bornemann A, Schmalbruch H (1992) Desmin and vimentin in regenerating muscles. Muscle Nerve 15:14–20

    Article  PubMed  Google Scholar 

  • Butler J, Cosmos E, Cauwenbergs P (1988) Positional signals: evidence for a possible role in muscle fiber-type patterning of the embryonic avian limb. Development 102:763–772

    Google Scholar 

  • Campion DR (1984) The muscle satellite cell: a review. Int Rev Cytol 87:225–251

    PubMed  Google Scholar 

  • Campion DR, Richardson RL, Kraeling RR, Reagan JO (1979) Changes in the satellite cell population in fetal pig skeletal muscle. J Anim Sci 48:1109–1115

    PubMed  Google Scholar 

  • Campion DR, Marks HL, Richardson LR (1982) An analysis of satellite cell content in the semimembranosus muscle of Japanese quail (Coturnix coturnix japonica) selected for rapid growth. Acta Anat 112:9–13

    PubMed  Google Scholar 

  • Campion DR, Purchas RW, Merkel RA, Romsos DR (1984) Genetic obesity and the muscle satellite cell. Proc Soc Exp Biol Med 176:143–147

    PubMed  Google Scholar 

  • Campion DR, McCusker RH, Richardson LR (1987) Ultrastructure of muscle satellite cells in hypersomatotrophic rats. Acta Anat 128:67–70

    PubMed  Google Scholar 

  • Cardasis CA, Cooper GW (1975) An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: a satellite cell-muscle fiber growth unit. J Exp Zool 191:347–358

    PubMed  Google Scholar 

  • Cardasis CA, Padykula HA (1981) Ultrastructural evidence indicating reorganization at the neuromuscular junction in the normal rat soleus muscle. Anat Rec 200:41–59

    Article  PubMed  Google Scholar 

  • Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. J Appl Physiol 256:C1262–C1266

    Google Scholar 

  • Cashman NR, Couvalt J, Wollman RL, Sanes JR (1987) Neural cell adhesion molecule in normal, denervated, and myopathic human muscle. Ann Neurol 21:481–489

    Article  PubMed  Google Scholar 

  • Castella-Escola J, Urena J, Alterio J, Carreras J, Martelly I, Climent F (1990) Expression of phosphoglycerate mutase mRNA in differentiating rat satellite cell cultures. FEBS Lett 268:24–26

    Article  PubMed  Google Scholar 

  • Castillo de Maruenda E, Franzini-Armstrong C (1978) Satellite and invasive cells in frog sartorius muscle. Tiss Cell 10:749–756

    Article  Google Scholar 

  • Cheek, DB (1985) The control of cell mass and replication. The DNA unit — a personal 20-year study. Early Human Dev 12: 211–239

    Article  Google Scholar 

  • Chen G, Quinn LS (1992) Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract. J Cell Physiol 153:563–574

    Article  PubMed  Google Scholar 

  • Chevallier A, Kieny A, Mauger A (1976) Sur I'origine de la musculature de l'aile chez les oiseaux. CR Seances Acad Sci Paris Serie D 282:309–311

    Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258

    PubMed  Google Scholar 

  • Chou SM, Nonaka I (1977) Satellite cells and muscle regeneration in diseased human skeletal muscles. J Neurol Sci 34:131–145

    Article  PubMed  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Über den Ursprung der Flügelmuskulatuur. Experimentelle Untersuchungen mit Wachtel-und Hühnerembryonen. Experientia 30:1446–1449

    Article  PubMed  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977a) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150:171–186

    Article  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977b) Experimentelle Befunde zur Muskelentwicklung in den Extremitäten von Hühnerembryonen. Verh Anat Ges 71:1231–1237

    PubMed  Google Scholar 

  • Church JC (1969) Satellite cells and myogenesis; a study in the fruit-bat web. J Anat 105:419–438

    PubMed  Google Scholar 

  • Cifuentes-Diaz C, Delaporte C, Dautreaux B, Charron D, Fardeau M (1992) Class II MHC antigens in normal human skeletal muscle. Muscle Nerve 15:295–302

    Article  PubMed  Google Scholar 

  • Cossu G, Zani B, Coletta M, Bouche M, Pacifici M, Molinaro M (1980) In vitro differentiation of satellite cells isolated from normal and dystrophic mammalian muscles. A comparison with embryonic myogenic cells. Cell Differ 9:357–368

    Article  PubMed  Google Scholar 

  • Cossu G, Molinaro M, Pacifici M (1983) Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev Biol 98:520–524

    Article  PubMed  Google Scholar 

  • Cossu G, Cicinelli P, Fieri C, Coletta M, Molinaro M (1985) Emergence of TPA-resistant 'satellite’ cells during muscle histogenesis of human limb. Exp Cell Res 160:403–411

    Article  PubMed  Google Scholar 

  • Cossu G, Eusebi F, Grassi F, Wanke E (1987) Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture. Dev Biol 123:43–50

    Article  PubMed  Google Scholar 

  • Cossu G, Ranaldi G, Senni MI, Molinaro M, Vivarelli E (1988) 'Early’ mammalian myoblasts are resistant to phorbol ester-induced block of differentiation. Development 102:65–69

    PubMed  Google Scholar 

  • Cossu G, Cusella-De Angeles MG, Senni MI, De Angeles L, Vivarelli E, Vella S, Bouche M, Boitani C, Molinaro M (1989) Adrenocorticotropin is a specific mitogen for mammalian myogenic cells. Dev Biol 131:331–336

    PubMed  Google Scholar 

  • Couvalt J, Merlie J, Goridis C, Sanes JR (1986) Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle. J Cell Biol 102:731–739

    Article  PubMed  Google Scholar 

  • Cull-Candy SG, Miledi R, Nakajima Y, Uchitel OD (1980) Visualization of satellite cells in living muscle fibers of the frog. Proc R Soc Lond [Biol] 209:563–568

    Google Scholar 

  • Cusella-De Angelis MG, Lyons G, Sonnino C, De Angelis L, Vivarelli E, Farmer K, Wright WE, Molinaro M, Bouche M, Buckingham ME, Cossu G (1992) MyoD, myogenin independent differentiation of primordial myoblasts in mouse somites. J Cell Biol 116:1243–1255

    Article  PubMed  Google Scholar 

  • d'Albis A, Couteaux R, Janmot C, Roulet A, Mira J (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of animals. Eur J Biochem 174:103–110

    Article  PubMed  Google Scholar 

  • Darr KC, Schultz E (1987) Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63:1816–1821

    PubMed  Google Scholar 

  • Darr KC, Schultz E (1989) Hindlimb suspension suppresses muscle growth and satellite cell proliferation. J Appl Physiol 67:1827–1834

    PubMed  Google Scholar 

  • DiMario J, Strohman RC (1988) Satellite cells from dystrophic (mdx) mouse muscle are stimulated by fibroblast growth factor in vitro. Differentiation 39:42–49

    PubMed  Google Scholar 

  • DiMario J, Buffinger N, Yamada S, Strohman RC (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 244:688–690

    PubMed  Google Scholar 

  • Dodson MV, Allen RE, Hossner KL (1985) Ovine somatomedin, multiplication-stimulating activity, and insulin promote skeletal muscle satellite cell proliferation in vitro. Endocrinology 117:2357–2363

    PubMed  Google Scholar 

  • Dodson MV, Mathison BA (1988) Comparison of ovine and rat muscle-derived satellite cells: response to insulin. Tissue Cell 20:909–918

    Article  PubMed  Google Scholar 

  • Donoghue MJ, Morris-Valero R, Johnson YR, Merlie JP, Sanes JR (1992) Mammalian muscle cells bear a cell-autonomous, heritable memory of their rostrocaudal position. Cell 69:67–77

    Article  PubMed  Google Scholar 

  • Doumit ME, McFarland DC, Minshall RD (1990) Satellite cells of growing turkeys: influence of donor age and sex on proliferation and differentiation in vitro. Exp Cell Res 189:81–86

    Article  PubMed  Google Scholar 

  • Duclos MJ, Wilkie RS, Goddard C (1991) Stimulation of DNA synthesis in chicken muscle satellite cells by insulin and insulin-like growth factors: evidence for exclusive mediation by a type-I insulin-like growth factor receptor. J Endocrinol 128:35–42

    PubMed  Google Scholar 

  • Dusterhoft S, Dieterle R, Pette D (1992) Myosin isoforms in rat satellite cell cultures of different origin. Eur J Cell Bio 57, Suppl 36:16

    Google Scholar 

  • Dusterhoft S, Yablonka-Reuveni Z, Pette D (1990) Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differentiation 45:185–191

    PubMed  Google Scholar 

  • Duxson MJ (1992) The relationship of nerve to myoblasts and newly-formed secondary myotubes in the fourth lumbrical muscle of the rat foetus. J Neurocytol 21:574–588

    Article  PubMed  Google Scholar 

  • Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124:820–825

    PubMed  Google Scholar 

  • Eisenberg BR, Jacobs-El J (1990) Are satellite cells essential for isomyosin switching? In: Pette D (ed) The dynamic state of muscle fibers. de Gruyter, Berlin, pp 681–691

    Google Scholar 

  • Enesco M, Puddy D (1964) Increase in the number of nuclei and weight in skeletal muscles of rats of various ages. Am J Anat 114:235–244

    Article  PubMed  Google Scholar 

  • Eusebi F, Molinaro M (1984) Acetylcholine sensitivity in replicating satellite cells. Muscle Nerve 7:488–492

    Article  PubMed  Google Scholar 

  • Feldman JL, Stockdale FE (1991) Skeletal muscle satellite cell diversity: satellite cells form fibers of different types in cell culture. Dev Biol 143:320–334

    Article  PubMed  Google Scholar 

  • Feldman JL, Stockdale FE (1992) Temporal appearance of satellite cells during myogenesis. Dev Biol 153:217–226

    Article  PubMed  Google Scholar 

  • Figarella-Branger D, Nedelec J, Pellissier JF, Boucraut J, Bianco N, Rougon G (1990) Expression of various isoforms of neural cell adhesive molecules and their highly polysialylated counterparts in diseased human muscles. J Neurol Sci 98:21–36

    Article  PubMed  Google Scholar 

  • Florini JR, Magri KA, Ewton DZ, James PL, Grindstaff K, Rotwein PS (1991) “Spontaneous” differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J Biol Chem 266:15917–15923

    PubMed  Google Scholar 

  • Funanage VL, Smith SM, Minnich MA (1992) Entactin promotes adhesion and long-term maintenance of cultured regenerated skeletal myotubes. J Cell Physiol 150:251–257

    Article  PubMed  Google Scholar 

  • Gao L, Kennedy JM (1992) Repression of the embryonic myosin heavy chain phenotype in regenerating chicken slow muscle is dependent on innervation. Muscle Nerve 15:419–429

    Article  PubMed  Google Scholar 

  • Ghins E, Colson-Van Schoor M, Marechal G (1986) Implantation of autologous cells in minced and devitalized rat skeletal muscles. J Musc Res Cell Motil 7:151–159

    Article  Google Scholar 

  • Gibson MC, Schultz E (1982) The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 202:329–337

    Article  PubMed  Google Scholar 

  • Gibson MC, Schultz E (1983) Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 6:574–580

    Article  PubMed  Google Scholar 

  • Giddings CJ, Gonyea WJ (1992) Morphological observations supporting muscle fiber hyperplasia following weight-lifting exercise in cats. Anat Rec 233:178–195

    Article  PubMed  Google Scholar 

  • Goodman SL, Deutzmann R, Nurcombe V (1989) Locomotory competence and laminin-specific cell surface binding sites are lost during myoblast differentiation. Development 105:795–802

    PubMed  Google Scholar 

  • Grounds MD (1991) Towards understanding skeletal muscle regeneration. Pathol Res Pract 187:1–22

    PubMed  Google Scholar 

  • Grounds MD, McGeachie JK (1987) A model of myogenesis in vivo, derived from detailed autoradiographic studies of regenerating skeletal muscle, challenges the concept of quantal mitosis. Cell Tiss Res 250:563–569

    Google Scholar 

  • Grounds MD, McGeachie JK (1989) A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice. Cell Tiss Res 255:385–391

    Article  Google Scholar 

  • Grounds MD, McGeachie JK (1990) Myogenic cell replication in minced skeletal muscle isografts of Swiss and BALBc mice. Muscle Nerve 13:305–313

    Article  PubMed  Google Scholar 

  • Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267:99–104

    Article  PubMed  Google Scholar 

  • Groux-Muscatelli B, Bassaglia Y, Barritault D, Caruelle JP, Gautron J (1990) Proliferating satellite cells express acidic fibroblast growth factor during in vitro myogenesis. Dev Biol 142:380–385

    PubMed  Google Scholar 

  • Gulati AK (1986) Pattern of skeletal muscle regeneration after reautotransplantation of regenerated muscle. J Embryol Exp Morph 92:1–10

    PubMed  Google Scholar 

  • Guthridge M, Wilson M, Cowling J, Bertolini J, Hearn MT (1992) The role of basic fibroblast growth factor in skeletal muscle regeneration. Growth Factors 6:53–63

    PubMed  Google Scholar 

  • Hall-Craggs EC (1980) Survival of satellite cells following exposure to the local anesthetic bupivacaine (Marcaine). Cell Tissue Res 209:131–135

    Article  PubMed  Google Scholar 

  • Hansen-Smith FM, Carlson BM (1979a) Cellular responses to free grafting of the extensor digitorum longus muscle of the rat. J Neurol Sci 41:149–173

    Article  PubMed  Google Scholar 

  • Hansen-Smith FM, Picou D, Golden MH (1979b) Muscle satellite cells in malnourished and nutritionally rehabilitated children. J Neurol Sci 41:207–221

    Article  PubMed  Google Scholar 

  • Hantai D, Tassin A-M, Gautron J, Labat-Robert J (1985) Biosynthesis of laminin and fibronectin by rat satellite cells during myogenesis in vitro. Cell Biol Intern Reports 9:647–654

    Article  Google Scholar 

  • Harris JB, Johnson MA, Karlsson E (1975) Pathological responses of rat skeletal muscle for a single subcutaneous injection of a toxin isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus. Clin Exp Pharm Phys 2:383–404

    Google Scholar 

  • Hartley RS, Yablonka-Reuveni Z. (1990) Long-term maintenance of primary myogenic cultures on a reconstituted basement membrane. In Vitro Cell Dev Biol 26:955–961

    PubMed  Google Scholar 

  • Hartley RS, Bandman E, Yablonka-Reuveni Z (1991) Myoblasts from fetal and adult skeletal muscle regulate myosin expression differently. Dev Biol 148:249–260

    Article  PubMed  Google Scholar 

  • Hartley RS, Bandman E, Yablonka-Reuveni Z (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153:206–216

    Article  PubMed  Google Scholar 

  • Hathaway MR, Hembree JR, Pampusch MS, Dayton WR (1991) Effect of transforming growth factor beta-1 on ovine satellite cell proliferation and fusion. J Cell Physiol 146:435–441

    Article  PubMed  Google Scholar 

  • Hauschka SD (1974) Clonal Analysis of Vertebrate Myogenesis. III. Developmental changes in the muscle-colony-forming cells of the human fetal limb. Dev Biol 37:345–368

    Article  PubMed  Google Scholar 

  • Herrera AA, Banner LR (1990) The use and effects of vital fluorescent dyes: observation of motor nerve terminals and satellite cells in living frog muscles. J Neurocytol 19:67–83

    Article  PubMed  Google Scholar 

  • Hess A, Rosner S (1970) The satellite cell bud and myoblast in denervated mammalian muscle fibers. Am J Anat 129:21–39

    Article  PubMed  Google Scholar 

  • Hinterberger TJ, Barald KF (1990) Fusion between myoblasts and adult muscle fibers promotes remodeling of fibers into myotubes in vitro. Development 109:139–147

    PubMed  Google Scholar 

  • Hoh JF, Hughes S (1988) Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds. J Muscle Res Cell Motil 9:59–72

    Article  PubMed  Google Scholar 

  • Hoh JF, Hughes S (1991a) Basal lamina and superfast myosin expression in regenerating cat jaw muscle. Muscle Nerve 14:398–406

    Article  PubMed  Google Scholar 

  • Hoh JF, Hughes S (1991b) Expression of superfast myosin in aneural regenerates of cat jaw muscle. Muscle Nerve 14:316–325

    Article  PubMed  Google Scholar 

  • Hughes SM, Blau HM (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345:350–353

    Article  PubMed  Google Scholar 

  • Hughes SM, Blau HM (1992) Muscle fiber pattern is independent of cell lineage in postnatal rodent development. Cell 68:659–671

    Article  PubMed  Google Scholar 

  • Hurme T, Kalimo H (1992) Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 24:197–205

    PubMed  Google Scholar 

  • Illa I, Leon-Monzon M, Dalakas MC (1992) Regenerating and denervated human muscle fibers and satellite cells express neural cell adhesion molecule recognized by monoclonal antibodies to natural killer cells. Ann Neurol 31:46–52

    Article  PubMed  Google Scholar 

  • Ishimoto S, Goto I, Ohta M, Kuroiwa Y (1983) A quantitative study of the muscle satellite cells in various neuromuscular disorders. J Neurol Sci 62:303–314

    Article  PubMed  Google Scholar 

  • Jennische E, Andersson GL (1991) Expression of GH receptor mRNA in regenerating skeletal muscle of normal and hypophysectomized rats. An in situ hybridization study. Acta Endocrin 125:595–602

    Google Scholar 

  • Jennische E, Hansson HA (1987) Regenerating skeletal muscle cells express insulin-like growth factor I. Acta Physiol Scand 130:327–332

    PubMed  Google Scholar 

  • Jennische E, Matejka GL (1992) IGF-I Binding and IGF-I Expression in Regenerating Muscle of Normal and Hypophysectomized Rats. Acta Physiol Scand 146:79–86

    PubMed  Google Scholar 

  • Jennische E, Skottner A, Hansson HA (1987) Satellite cells express the trophic factor IGF-I in regenerating skeletal muscle. Acta Physiol Scand 129:9–15

    PubMed  Google Scholar 

  • Kaprielian Z, Bandman E, Fambrough DM (1991) Expression of Ca-ATPase isoforms in denervated, regenerating and dystrophic chicken skeletal muscle. Dev Biol 144:199–211

    Article  PubMed  Google Scholar 

  • Katz FRS (1961) The termination of the afferent nerve fiber in the muscle spindle of the frog. Phil Trans Roy Soc Lond 243:221–225

    Google Scholar 

  • Kaufman SJ, George-Weinstein M, Foster RF (1991) In vitro development of precursor cells in the myogenic lineage. Dev Biol 146:228–238

    Article  PubMed  Google Scholar 

  • Kelly AM (1978) Perisynaptic satellite cells in the developing and mature rat soleus muscle. Anat Rec 190:891–903

    Article  PubMed  Google Scholar 

  • Kelly AM, Rubinstein NA (1980) Patterns of myosin synthesis in regenerating normal and denervated muscles of rat. In: Pette D (ed) Plasticity of muscle. de Gruyter, Berlin, pp 161–175

    Google Scholar 

  • Kennedy JM, Eisenberg BR, Reid SK, Sweeney LJ, Zak R (1988) Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle. Am J Anat 181:203–215

    Article  PubMed  Google Scholar 

  • Kennedy JM, Sweeney LJ, Gao LZ (1989) Ventricular myosin expression in developing and regenerating muscle, cultured myotubes, and nascent myofibers of overloaded muscle in the chicken. Med Sci Sports Exerc 21:S187–S197

    PubMed  Google Scholar 

  • Klein-Ogus C, Harris JB (1983) Preliminary observations of satellite cells in undamaged fibers of the rat soleus muscle assaulted by a snake-venom toxin. Cell Tissue Res 230:671–676

    Article  PubMed  Google Scholar 

  • Konigsberg UR, Lipton BH, Konigsberg IR (1975) The regenerative response of single mature fibers isolated in vitro. Dev Biol 45:260–275

    Article  PubMed  Google Scholar 

  • Kopriwa BM, Moss FP (1971) A radioautographic technique for whole mounts of muscle fibers. J Histochem Cytochem 19:51–55

    PubMed  Google Scholar 

  • Kryvi H (1975) The structure of the myosatellite cells in axial muscles of the shark Geleus melastomus. Anat Embryol 147:35–44

    Article  PubMed  Google Scholar 

  • Kryvi H, Eide A (1977) Morphometric and autoradiographic studies on the growth of red and white axial muscle fibers in the shark Etmopterus spinax. Anat Embryol 151:17–28

    Article  PubMed  Google Scholar 

  • Larocque AA, Politoff AL, Peters A (1980) The visualization of myosatellite cells in normal and denervated muscle: a new light microscopic staining technique. Anat Rec 196:373–385

    Article  PubMed  Google Scholar 

  • Lawrence T, Mauro A (1979) Identification of satellite cells in vitro in frog muscle fibers by Nomarski optics. In: Mauro A (ed) Muscle regeneration. Raven, New York, pp 275–281

    Google Scholar 

  • Le Douarin N, Barcq G (1969) Sur l' utilisation des cellules de caille japonaise comme “marquers biologiques” en embryologie expermentale. CR Sceaneces Acad Sci Paris D 269:1543–1546

    Google Scholar 

  • Le Moigne A, Martelly I, Barlovatz-Meimon G, Franquinet R, Aamiri A, Frisdal E, Bassaglia Y, Moraczewski G, Gautron J (1990) Characterization of myogenesis from adult satellite cells cultured in vitro. Int J Dev Biol 34:171–180

    PubMed  Google Scholar 

  • Levinovitz A, Jennische E, Oldfors A, Edwall D, Norstedt G (1992) Activation of insulin-like growth factor-II expression during skeletal muscle regeneration in the rat — correlation with myotube formation. Mol Endocrinol 6:1227–1234

    Article  PubMed  Google Scholar 

  • Lipton BH, Schultz E (1979) Developmental fate of skeletal muscle satellite cells. Science 205:1292–1294

    PubMed  Google Scholar 

  • Lyons GE, Buckingham ME (1992) Developmental regulation of myogenesis in the mouse. Sem Dev Biol 3:243–253

    Google Scholar 

  • Maier A, Gorza L, Schiaffino S, Pette D (1988) A combined histochemical and immunohistochemical study on the dynamics of fast-to-slow fiber transformation in chronically stimulated rabbit muscle. Cell Tissue Res 254:59–68

    Article  PubMed  Google Scholar 

  • Mastaglia FL, Barwick DD, Hall R (1970) Myopathy in acromegaly. Lancet 2:907–911

    Article  PubMed  Google Scholar 

  • Mastalgia FL, Walton JN (1971) An ultrastructural study of skeletal muscle on polymyositis. J Neurol Sci 12:473–504

    Article  PubMed  Google Scholar 

  • Mastaglia FL, Dawkins RL, Papadimitriou JM (1975) Morphological changes in skeletal muscle after transplantation. J Neurol Sci 25:227–247

    Article  PubMed  Google Scholar 

  • Mathison BD, Mathison BA, McNamara JP, Dodson MV (1989) Insulin-like growth factor I receptor analysis of satellite cell-derived myotube membranes established from two lines of Targhee rams selected for growth rate. Domest Anim Endocrinol 6:191–201

    Article  PubMed  Google Scholar 

  • Matsuda R, Spector DH, Strohman RC (1983) Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms. Dev Biol 100:478–488

    Article  PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493498

    Google Scholar 

  • Maynard JA, Cooper RR (1973) Two unusual satellite cell-intrafusal muscle fiber relationships. Z Anat Entwicklungsgesch 140:1–9

    Article  PubMed  Google Scholar 

  • Mazanet R, Franzini-Armstrong C (1986) The satellite cell. In: Engel AG, Banker BQ (eds) Myology, vol 2. McGraw-Hill, New York, pp 285–307

    Google Scholar 

  • Mazanet R, Reese BF, Franzini-Armstrong C, Reese TS (1982) Variability in the shapes of satellite cells in normal and injured frog sartorius muscle. Dev Biol 93:22–27

    Article  PubMed  Google Scholar 

  • McCormick KM, Schultz E (1990) Embryonic fibers in avian muscle following wing weighting. J Cell Biol 111:35a

    Google Scholar 

  • McCormick KM, Schultz E (1992) Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy. Dev Biol 150:319–334

    Article  PubMed  Google Scholar 

  • McCormick KM, Thomas DP (1992) Exercise-induced satellite cell activation in senescent soleus muscle. J Appl Physiol 72:888–893

    Article  PubMed  Google Scholar 

  • McCusker RH, Campion (1986) Effect of growth hormone-secreting tumors on skeletal muscle cellularity in the rat. J Endocr 111:279–285

    PubMed  Google Scholar 

  • McGeachie JK (1989) Sustained cell proliferation in denervated skeletal muscle of mice. Cell Tissue Res 257:455–457

    Article  PubMed  Google Scholar 

  • McGeachie J, Allbrook D (1978) Cell proliferation in skeletal muscle following denervation or tenotomy. A series of autoradiographic studies. Cell Tissue Res 193:259–267

    Article  PubMed  Google Scholar 

  • McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. Cell Tissue Res 248:125–130

    Article  PubMed  Google Scholar 

  • Minshall RD, McFarland DC, Doumit ME (1990) Interaction of insulin-like growth factor I with turkey satellite cells and satellite cell-derived myotubes. Domest Anim Endocrinol 7:413–424

    Article  PubMed  Google Scholar 

  • Mitchell CA, McGeachie JK, Grounds MD (1992) Cellular differences in the regeneration of murine skeletal muscle: a quantitative histological study in SJL/J and BALB/c mice. Cell Tissue Res 269:159–166

    Article  PubMed  Google Scholar 

  • Morgan JE (1988) Myogenicity in vitro and in vivo of mouse muscle cells separated on discontinuous Percoll gradients. J Neurol Sci 85:197–207

    Article  PubMed  Google Scholar 

  • Morgan JE, Coulton GR, Partridge TA (1987) Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil 8:386–396

    Article  PubMed  Google Scholar 

  • Morgan JE, Hoffman EP, Partridge TA (1990) Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol 111:2437–2449

    Article  PubMed  Google Scholar 

  • Morlet K, Grounds MD, McGeachie JK (1989) Muscle precursor replication after repeated regeneration of skeletal muscle in mice. Anat Embryol 180:471–478

    Article  PubMed  Google Scholar 

  • Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435

    Article  PubMed  Google Scholar 

  • Mouly V, Toutant M, Fiszman MY (1987) Chick and quail limb bud myoblasts, isolated at different times during muscle development, express stage-specific phenotypes when differentiated in culture. Cell Differ 20:17–25

    Article  PubMed  Google Scholar 

  • Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99:435–444

    PubMed  Google Scholar 

  • Mulvaney DR, Marple DN, Merkel RA (1988) Proliferation of skeletal muscle satellite cells after castration and administration of testosterone propionate. Proc Soc Exp Biol Med 188:40–45

    PubMed  Google Scholar 

  • Murray MA, Robbins N (1982) Cell proliferation in denervated muscle: identity and origin of dividing cells. Neuroscience 7:1823–1833

    Article  PubMed  Google Scholar 

  • Nameroff M, Rhodes LD (1989) Differential response among cells in the chick embryo myogenic lineage to photosensitization by Merocyanine 540. J Cell Physiol 141:475–482

    Article  PubMed  Google Scholar 

  • Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissue. Am J Anat 168:257–276

    Article  PubMed  Google Scholar 

  • Ocalan M, Goodman SL, Kuhl U, Hauschka SD, von der Mark K (1988) Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev Biol 125:158–167

    Article  PubMed  Google Scholar 

  • Ontell M (1974) Muscle satellite cells: a validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat Rec 178:211–227

    Article  PubMed  Google Scholar 

  • Ontell M (1977) Neonatal muscle: an electron microscopic study. Anat Rec 189:669–690

    Article  PubMed  Google Scholar 

  • Ontell MP, Hughes D, Hauschka SD, Ontell M (1992) Transient neonatal denervation alters the proliferative capacity of myosatellite cells in dystrophic (129ReJ dy/dy) muscle. J Neurbiol 23:407–419

    Article  Google Scholar 

  • Peterson CA, Cho M, Rastinejad F, Blau HM (1992) Beta-enolase is a marker of human myoblast heterogeneity prior to differentiation. Dev Biol 151:626–629

    Article  PubMed  Google Scholar 

  • Phillips GD, Carlson BM Lu D, Mitashov VI (1987) Survival of myogenic cells in freely grafted rat rectus femoris and extensor digitorum longus muscles. Am J Anat 180:365–372

    Article  PubMed  Google Scholar 

  • Phillips GD, Hoffman JR, Knighton DR (1990) Migration of myogenic cells in the rat extensor digitorum longus muscle studied with a split autograft model. Cell Tissue Res 262:81–88

    Article  PubMed  Google Scholar 

  • Popiela H (1976) Muscle satellite cells in urodele amphibians: facilitated identification of satellite cells using ruthenium red staining. J Exp Zool 198:57–64

    Article  PubMed  Google Scholar 

  • Quax PH, Frisdal E, Pedersen N, Bonavaud S, Thibert P, Martelly I, Verheijen JH, Blasi F, Barlovatz-Meimon G (1992) Modulation of activities and RNA level of the components of the plasminogen activation system during fusion of human myogenic satellite cells in vitro. Dev Biol 151:166–175

    Article  PubMed  Google Scholar 

  • Quinn LS, Nameroff M, Holtzer H (1984) Age-dependent changes in myogenic precursor cell compartment sizes. Exp Cell Res 154:65–82

    Article  PubMed  Google Scholar 

  • Quinn LS, Norwood TH, Nameroff M (1988) Myogenic stem cell commitment probability remains constant as a function of organismal and mitotic age. J Cell Physiol 134:324–336

    Article  PubMed  Google Scholar 

  • Quinn LS, Ong LD, Roeder RA (1990) Paracrine control of myoblast proliferation and differentiation by fibroblasts. Dev Biol 140:8–19

    Article  PubMed  Google Scholar 

  • Reger JF, Craig AS (1968) Studies on the fine structure of muscle fibers and associated satellite cells in hypertrophic human deltoid muscle. Anat Rec 162:483–500

    Article  PubMed  Google Scholar 

  • Reznik M (1969) Origin of myoblasts during skeletal muscle regeneration. Lab Invest 20:353–363

    PubMed  Google Scholar 

  • Ridpath JF, Huiatt TW, Trenkle AH, Robson RM, Bechtel PJ (1984) Growth and differentiation of chicken embryo muscle cell cultures derived from fast-and slow-growing lines. Different 26:121–126

    PubMed  Google Scholar 

  • Roberts P, McGeachie JK (1992a) The effects of clenbuterol on satellite cell activation and the regeneration of skeletal muscle: an autoradiographic and morphometric study of whole muscle transplants in mice. J Anat 180:57–65

    PubMed  Google Scholar 

  • Roberts P, McGeachie JK (1992b) The effects of pre-and post-transplantation exercise on satellite cell activation and the regeneration of skeletal muscle transplants: a morphometric and autoradiographic study in mice. J Anat 180:67–74

    PubMed  Google Scholar 

  • Robertson TA, Papadimitriou JM, Grounds MD (1992) Fusion between a myogenic cell in the satellite cell position and undamaged adult myofiber segments. Experientia 48:394–395

    Article  PubMed  Google Scholar 

  • Rosen GD, Sanes JR, LaChance R, Cunningham JM, Roman J, Dean DC (1992) Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69:1107–1119

    Article  PubMed  Google Scholar 

  • Rosenblatt JD, Parry DJ (1992) Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol 73:2538–2543

    PubMed  Google Scholar 

  • Rubin LL, Keller CE, Schuetze SM (1979) Satellite cells in isolated adult muscle fibers in tissue culture. In: Mauro A (ed) Muscle regeneration. Raven, New York, pp 281–284

    Google Scholar 

  • Saad AD, Obinata T, Fischman DA (1987) Immunochemical analysis of protein isoforms in thick myofilaments of regenerating skeletal muscle. Dev Biol 119:336–349

    Article  PubMed  Google Scholar 

  • Salviati G, Biasia E, Aloisi M (1986) Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region. Nature 322:637–639

    Article  PubMed  Google Scholar 

  • Schiaffino S, Bormioli SP, Aloisi M (1976) The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch [B] 21:113–118

    Google Scholar 

  • Schmalbruch H (1978) Satellite cells of rat muscles as studied by freeze-fracturing. Anat Rec 191:371–376

    Article  PubMed  Google Scholar 

  • Schmalbruch H, Hellhammer U (1977) The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec 189:169–175

    Article  PubMed  Google Scholar 

  • Schrag JA, Cameron JA (1983) Regeneration of adult newt skeletal muscle tissue in vitro. J Embryol Exp Morphol 77:255–271

    PubMed  Google Scholar 

  • Schubert W (1992) Antigenic determinants of lymphocyte-Talphabeta receptor and other leukocyte surface proteins as differential markers of skeletal muscle regeneration — detection of spatially and timely restricted patterns by MAM microscopy. Eur J Cell Biol 58:395–410

    PubMed  Google Scholar 

  • Schubert W, Zimmermann K, Cramer M, Starzinski-Powitz A (1989) Lymphocyte antigen Leu-19 as a molecular marker of regeneration in human skeletal muscle. Proc Natl Acad Sci USA 86:307–311

    PubMed  Google Scholar 

  • Schultz E (1976) Fine structure of satellite cells in growing skeletal muscle. Am J Anat 147:49–70

    Article  PubMed  Google Scholar 

  • Schultz E (1978) Changes in the satellite cells of growing muscle following denervation. Anat Rec 190:299–311

    Article  PubMed  Google Scholar 

  • Schultz E (1979) Quantification of satellite cells in growing muscle using electron microscopy and fiber whole mounts. In: Mauro A, Bischoff R, Carlson B, Konigsberg I, Lipton BH, Shafiq SA (eds) Muscle regeneration. Raven, New York, pp 131–135

    Google Scholar 

  • Schultz E (1984) A quantitative study of satellite cells in regenerated soleus and extensor digitorum longus muscles. Anat Rec 208:501–506

    Article  PubMed  Google Scholar 

  • Schultz E (1989) Satellite cell behavior during skeletal muscle growth and regeneration. Med Sci Sports Exerc 21:S181–S186

    PubMed  Google Scholar 

  • Schultz E, Darr KC (1990) The role of satellite cells in adaptive or induced fiber transformations. In: Pette D (ed) The dynamic state of muscle fibers. de Gruyter, Berlin, pp 667–679

    Google Scholar 

  • Schultz E, Heckman-Jones J (1991) Generation of myonuclei by satellite cells during skeletal muscle growth. J Cellul Biochem 15C:89

    Google Scholar 

  • Schultz E, Jaryszak DL (1985) Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech Ageing Dev 30:63–72

    Article  PubMed  Google Scholar 

  • Schultz E, Lipton BH (1978) The effect of Marcaine on muscle and nonmuscle cells in vitro. Anat Rec 191:351–370

    Article  PubMed  Google Scholar 

  • Schultz E, Lipton BH (1982) Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev 20:377–383

    Article  PubMed  Google Scholar 

  • Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    Article  PubMed  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    Article  PubMed  Google Scholar 

  • Schultz, E, Jaryszak DL, Gibson MC, Albright DJ (1986) Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J Musc Res Cell Motil 7:361–367

    Article  Google Scholar 

  • Seed J, Hauschka SD (1988) Clonal analysis of vertebrate myogenesis. VIII. Fibroblasts growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev Biol 128:40–49

    Article  PubMed  Google Scholar 

  • Senni MI, Castrignano F, Poiana G, Cossu G, Scarsella G, Biagioni S (1987) Expression of adult fast pattern of acetylcholinesterase molecular forms by mouse satellite cells in culture. Differentiation 36:194–198

    PubMed  Google Scholar 

  • Smith TH, Miller JB (1992) Distinct myogenic programs of embryonic and fetal mouse muscle cells: expression of the perinatal myosin heavy chain isoform in vitro. Dev Biol 149:16–26

    Article  PubMed  Google Scholar 

  • Snow MH (1977a) Myogenic cell formation in regenerating rat skeletal muscle injured by minicing. I. A fine structural study. Anat Rec 188:181–199

    Article  PubMed  Google Scholar 

  • Snow MH (1977b) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat Rec 188:201–217

    Article  PubMed  Google Scholar 

  • Snow MH (1977c) The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res 185:399–408

    Article  PubMed  Google Scholar 

  • Snow MH (1978) An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res 186:535–540

    Article  PubMed  Google Scholar 

  • Snow MH (1981) Satellite cell distribution within the soleus muscle of the adult mouse. Anat Rec 201:463–469

    Article  PubMed  Google Scholar 

  • Snow MH (1983) A quantitative ultrastructural analysis of satellite cells in denervated fast and slow muscles of the mouse. Anat Rec 207:593–604

    Article  PubMed  Google Scholar 

  • Snow MH (1990) Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists. Anat Rec 227:437–446

    Article  PubMed  Google Scholar 

  • Sommerland H, Ullman M, Jennische E, Skottner A, Oldfors A (1989) Muscle regeneration. The effect of hypophysectomy on cell proliferation and expression of insulin-like growth factor-I. Acta Neuropathol (Berl) 78:264–269

    Article  PubMed  Google Scholar 

  • Staron RS, Gohlsch B, Pette D (1987) Myosin polymorphism in single fibers of chronically stimulated rabbit fast-twitch muscle. Pflugers Arch 408:444–450

    Article  PubMed  Google Scholar 

  • Stockdale FE, Miller JB (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol 123:1–9

    Article  PubMed  Google Scholar 

  • Tennyson VM, Brzin M, Kremzner LT (1973) Acetylcholinesterase activity in the myotube and muscle satellite cell of the fetal rabbit. An electron microscopic-cytochemical and biochemical study. J Histochem Cytochem 21:634–652

    PubMed  Google Scholar 

  • Terasawa K (1986) Muscle regeneration and satellite cells in fukuyama type congenital muscular dystrophy. Muscle Nerve 9:465–470

    Article  PubMed  Google Scholar 

  • Teravainen H (1970) Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibers. Z Zellforsch Mikrosk Anat 103:320–327

    Article  PubMed  Google Scholar 

  • Thomason DB, Booth FW (1990) Stable incorporation of a bacterial gene into adult rat skeletal muscle in vivo. Am J Physiol 258:C578–C581

    PubMed  Google Scholar 

  • Thompson SH, Boxhorn LK, Kong WY, Allen RE (1989) Trenbolone alters the responsiveness of skeletal muscle satellite cells to fibroblast growth factor and insulin-like growth factor I. Endocrinology 124:2110–2117

    PubMed  Google Scholar 

  • Ullman M, Oldfors A (1989) Effects of growth hormone on skeletal muscle. I. Studies on normal adult rats. Acta Physiol Scand 135:531–536

    PubMed  Google Scholar 

  • Ullman M, Oldfors A (1991) Skeletal muscle regeneration in young rats is dependent on growth hormone. J Neurol Sci 106:67–74

    Article  PubMed  Google Scholar 

  • Umnova MM, Seene TP (1991) The effect of increased functional load on the activation of satellite cells in the skeletal muscle of adult rats. Int J Sports Med 12:501–504

    PubMed  Google Scholar 

  • Van Haelst U (1970) An electron microscopic study of muscle in Werdnig-Hoffmann's disease. Virchows Arch Abt A Path Anat 351:291–305

    Article  Google Scholar 

  • Vivarelli E, Cossu G (1986) Neural control of early myogenic differentiation in cultures of mouse somites. Dev Biol 117:319–325

    Article  PubMed  Google Scholar 

  • Vivarelli E, Brown WE, Whalen RG, Cossu G (1988) The expression of slow myosin during mammalian somitogenesis and limb bud differentiation. J Cell Biol 107:2191–2197

    Article  PubMed  Google Scholar 

  • Wakshull E, Bayne EK, Chiquet M, Fambrough DM (1983) Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia. Dev Biol 100:464–477

    Article  PubMed  Google Scholar 

  • Walsh FS, Moore SE (1985) Expression of cell adhesion molecule, N-CAM in diseases of adult human skeletal muscles. Neurosci Lett 59:73–78

    Article  PubMed  Google Scholar 

  • Watkins SC, Cullen MJ (1988) A quantitative study of myonuclear and satellite cell nuclear size in Duchenne's muscular dystrophy, polymyositis and normal human skeletal muscle. Anat Rec 222:6–11

    Article  PubMed  Google Scholar 

  • Watt DJ, Lambert K, Morgan JE, Partridge TA, Sloper JC (1982) Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 57:319–331

    Article  PubMed  Google Scholar 

  • Watt DJ, Morgan JE, Clifford MA, Partridge TA (1987) The movement of muscle precursor cells between adjacent regenerating muscles in the mouse. Anat Embryol 175:527–536

    Article  PubMed  Google Scholar 

  • Webster C, Blau HM (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 16:557–565

    Article  PubMed  Google Scholar 

  • Webster C, Pavlath GK, Parks DR, Walsh FS, Blau HM (1988) Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp Cell Res 174:252–265

    Article  PubMed  Google Scholar 

  • Whalen RG, Harris JB, Butler-Browne GS, Sesodia S (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 141:24–40

    Article  PubMed  Google Scholar 

  • White NK, Bonner PH, Nelson DR, Hauschka SD (1975) Clonal analysis of vertebrate myogenesis. IV. Medium-dependent classification of colony-forming cells. Dev Biol 44:346–361

    Article  PubMed  Google Scholar 

  • Winchester PK, Davis ME, Alway SE, Gonyea WJ (1991) Satellite cell activation in the stretch-enlarged anterior latissimus dorsi muscle of the adult quail. Am J Physiol 260:C206–C212

    PubMed  Google Scholar 

  • Winchester PK, Gonyea WJ (1992a) A quantitative study of satellite cells and myonuclei in stretched avian slow tonic muscle. Anat Rec 232:369–377

    Article  PubMed  Google Scholar 

  • Winchester PK, Gonyea WJ (1992b) Regional injury and the terminal differentiation of satellite cells in stretched avian slow tonic muscle. Dev Biol 151:459–472

    Article  PubMed  Google Scholar 

  • Wokke JH, Van den Oord CJ, Leppink GJ, Jennekens FG (1989) Perisynaptic satellite cells in human external intercostal muscle: a quantitative and qualitative study. Anat Rec 223:174–180

    Article  PubMed  Google Scholar 

  • Wright WE (1985) Myoblast senescence in muscular dystrophy. Exp Cell Res 157:343354

    Article  Google Scholar 

  • Yablonka-Reuveni Z, Balestreri TM, Bowen-Pope DF (1990) Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J Cell Biol 111:1623–1629

    Article  PubMed  Google Scholar 

  • Yablonka-Reuveni Z, Nameroff M (1987) Skeletal muscle cell populations. Separation and partial characterization of fibroblast-like cells from embryonic tissue using density centrifugation. Histochemistry 87:27–38

    Article  PubMed  Google Scholar 

  • Yablonka-Reuveni Z, Nameroff M (1990) Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle. Differentiation 45:21–28

    PubMed  Google Scholar 

  • Yablonka-Reuveni Z, Quinn LS, Nameroff M (1987) Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev Biol 119:252–259

    Article  PubMed  Google Scholar 

  • Yaffe D (1968) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA 61:477–483

    PubMed  Google Scholar 

  • Yamada S, Buffinger N, DiMario J, Strohman RC (1989) Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med Sci Sports Exerc 21:S173–S180

    PubMed  Google Scholar 

  • Yamada S, Kimura H, Fujimaki A, Strohman R (1992) Expression of fibroblast growth factors in exercise-induced muscle hypertrophy with special reference to the role of muscle satellite cells. Integration Medical Sp 37:67–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Schultz, E., McCormick, K.M. (1994). Skeletal muscle satellite cells. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 123. Reviews of Physiology, Biochemistry and Pharmacology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030904

Download citation

  • DOI: https://doi.org/10.1007/BFb0030904

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57536-8

  • Online ISBN: 978-3-540-48217-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics