Skip to main content

Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation

  • Chapter
  • First Online:
Chemistry, Spectroscopy and Applications of Sol-Gel Glasses

Part of the book series: Structure and Bonding ((STRUCTURE,volume 77))

Abstract

The sol-gel synthesis of metal oxides can be performed via the hydrolysis and condensation of metal cations in aqueous solutions. This inorganic route provides a cheap and reliable way for industrial uses. However, many hydrolyzed precursors can be present simultaneously in the precursor solution and very few data are available on the formation of condensed species. The so-called Partial Charge Model provides a useful guide to describe and predict hydrolysis and condensation reactions in aqueous solutions. A charge-pH diagram can be established. It shows how condensation can be initiated via acid-base or redox reactions. The two basic condensation processes, olation and oxolation, are then discussed in terms of a charge-electronegativity diagram. They can lead either to small solute condensed species (polyanions or polycations) or to the formation of an infinite network (colloids, gels, or precipitates). Complexation by anionic species is finally discussed in the frame of an electronegativity-pH diagram. It also plays an important role during the formation of solid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

PCM:

Partial Charge Model

χ:

Electronegativity

Μ:

Chemical Potential

δ:

Partial charge

σ:

Chemical softness (= 1/η)

η:

Chemical hardness

χi, χx or χ(X):

Electronegativity of an atom or of a group of atoms

δ(X) or δx :

Partial charge beared by an atom or a group of atoms

r:

Covalent radius

Zeff :

Nuclear effective charge

k:

Constant linking hardness to electronegativity (k = 1.36 in this work)

z:

Oxidation state (valency) of a cation (1≤z≤8)

χ0 :

Pauling electronegativity

N:

Coordination number of a cation (N ≤ 12)

h:

Number of protons removed from an aquo-ion [M(OH2)N]z+

χw :

Mean electronegativity of an aqueous solution given by Eq. (13)

Β:

= RTLn 10 with R perfect-gas constant and T temperature

cH :

Proton concentration

λ:

Constant linking electronegativity to pH(= 0.035 according to Eq. (12))

χ *+ :

Critical electronegativity for acid ionization given by Eq. (77) with Ω=1

χ * :

Critical electronegativity for basic ionization given by Eq. (77) with Ω=−1

χ *0 :

Critical electronegativity for olation given by Eq. (77) with Ω=0

χ *OH :

Critical electronegativity for oxolation given by Eq. (75)

PZC:

Point of Zero Charge of a solid phase

AcO :

Acetate ion CH3COO

α:

Number of water molecules removed by a ligand upon coordination

χP :

Mean electronegativity of a complexed precursor

n:

Valency of an anion Xn−

m:

Stoichiometric coefficient

q:

Number of protons beared by an anion HqX(n−q)−

χD :

Critical electronegativity for ionic dissociation given by Eq. (79)

χH:

Critical electronegativity for hydrolysis given by Eq. (80)

h *q :

Critical hydrolysis ratio associated to a HqX(n−q)− anion given by Eq. (83)

pH *q :

Critical pH value associated to h *q through Eq. (58)

χq :

Mean electronegativity of an anion HqXn−q)−

δ:

Charge differential characteristic of an element given by Eq. (59)

pHm :

Optimum pH for complexation by an anion Xn− given by Eq. (62)

ox:

Oxalate anion C2O 2−4

δ(χ,X):

Partial charge upon the X group when mean electronegativity is χ

χS:

Mean electronegativity of the aquo ligand (2.491 using Table 5)

Ω:

Index for Eqs. (76) and (77)

σ(N,M):

Softness of the [M(OH2)N] complex given by Eq. (86)

References

  1. Hench LL, West JK (1990) Chem Rev 90: 33

    Google Scholar 

  2. Dislich H, Hinz P (1982) J Non Cryst Solids 48: 11

    Google Scholar 

  3. Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18: 259

    Google Scholar 

  4. Baes CF, Mesmer RE (1976) Hydrolysis of cations. Wiley, New-York

    Google Scholar 

  5. Matijevic E (1985) Ann Rev Mater Sci 15: 483

    Google Scholar 

  6. Sanderson RT (1951) Science 114: 670

    Google Scholar 

  7. Pauling L (1932) J Am Chem Soc 54: 3570

    Google Scholar 

  8. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68: 3801

    Google Scholar 

  9. Parr RG, Pearson RG (1983) J Am Chem Soc 105: 7512

    Google Scholar 

  10. Yang W, Parr RG (1985) Proc Natl Acad Sci USA 82: 6723

    Google Scholar 

  11. Allred AL, Rochow E (1958) J Inorg Nucl Chem 5: 264

    Google Scholar 

  12. JØrgensen CK (1963) Inorganic complexes. Academic Press, London

    Google Scholar 

  13. Bach S, Henry M, Baffier N, Livage J (1990) Fr Pat 90, 02565

    Google Scholar 

  14. Henry M (1988) Application of the electronegativity concept to hydrolysis and condensation phenomena in inorganic chemistry. Thesis, Université Pierre et Marie Curie, Paris; Livage J, Henry M (1988) in: Mackenzie JD, Ulrich DR (eds) Ultrastructure Processing of Advanced Ceramics, Wiley, New-York, p 183

    Google Scholar 

  15. Tytko RH, Glemser O (1976) Adv Inorg Chem Radiochem 19: 239

    Google Scholar 

  16. Pope MT (1983) Heteropoly and isopolyoxometallates. Springer, Berlin Heidelberg New-York

    Google Scholar 

  17. Brown PL, Shying ME, Sylva RN (1987) J Chem Soc Dalton Trans 2149

    Google Scholar 

  18. Cruywagen JJ, Van der Merwe IFJ (1987) J Chem Soc Dalton Trans 1701

    Google Scholar 

  19. Tytko RH (1986) Polyhedron 5: 497

    Google Scholar 

  20. Maksimovskaya RI, Burtseva KG (1985) Polyhedron 4: 1559

    Google Scholar 

  21. Masters AF, Gheller SF, Brownlee RTC, O'Connor MJ, Wedd AG (1980) Inorg Chem 19: 3866

    Google Scholar 

  22. Richardson E (1959) J Inorg Nucl Chem 25: 575

    Google Scholar 

  23. Doucet Y, Bugnon S (1957) J Chim Phys 54: 155

    Google Scholar 

  24. Chemseddine A, Henry M, Livage J (1984) Rev Chim Minérale 21: 487

    Google Scholar 

  25. Chemseddine A, Babonneau F, Livage J (1987) J Non-Cryst Solids 91: 271

    Google Scholar 

  26. Heath E, Howarth OW (1981) J Chem Soc Dalton Trans 1105

    Google Scholar 

  27. Gharbi N, Sanchez C, Livage J, Lemerle J, Nejem L, Lefebvre J (1982) Inorg Chem 21: 2758

    Google Scholar 

  28. Ardon M, Bino A (1987) Structure and Bonding 65: 1

    Google Scholar 

  29. Grant M, Jordan RB (1981) Inorg Chem 20: 55

    Google Scholar 

  30. Xu FC, Krouse HR, Saddle TW (1985) Inorg Chem 24: 267

    Google Scholar 

  31. Fiat D, Connick RE (1968) J Am Chem Soc 90: 608

    Google Scholar 

  32. Stünzi H, Spiccia L, Rotzinger FP, Marty W (1989) Inorg Chem 28: 66

    Google Scholar 

  33. Singh KK, Sarode PR, Ganguly P (1983) J Chem Soc Dalton Trans 1895

    Google Scholar 

  34. Segal DL (1984) J Chem Tech Biotechnol 34A: 25, 355

    Google Scholar 

  35. Khoe GH, Brown PL, Sylva RN, Robins RG (1986) J Chem Soc Dalton Trans 1901

    Google Scholar 

  36. Blesa MA, Matijevic E (1989) Adv Colloids Interface Sci 29: 173

    Google Scholar 

  37. Akitt JW, Elders JM (1988) J Chem Soc Dalton Trans 1347

    Google Scholar 

  38. Thompson AR, Kunwar AC, Gutowsky HS, Oldfield E (1987) J Chem Soc Dalton Trans 2317

    Google Scholar 

  39. Bottero JY, Axelos M, Tchoubar D, Cases JM, Fripiat JJ, Fiessinger F (1987) J Colloid Interface Sci 117: 47

    Google Scholar 

  40. Axelos M, Tchoubar D, Bottero JY, Fiessinger F (1985) J Physique 46: 1587

    Google Scholar 

  41. Giese Jr RF (1976) Acta Cryst B32: 1719

    Google Scholar 

  42. Spiccia L, Marty W (1986) Inorg Chem 25: 266

    Google Scholar 

  43. Flynn Jr CM (1984) Chem Rev 84: 31

    Google Scholar 

  44. Christensen AN (1976) Acta Chem Scand A30: 133

    Google Scholar 

  45. Surayambunathan V, Liao YX, Meisel D (1989) Langmuir 5: 1423

    Google Scholar 

  46. Ervin Jr G (1952) Acta Cryst 5: 103

    Google Scholar 

  47. Thompson M, Connick RE (1981) Inorg Chem 20: 2279

    Google Scholar 

  48. Rotzinger FP, Stünzi H, Marty W (1986) Inorg Chem 25: 489

    Google Scholar 

  49. Monsted L, Monsted O, Sprinborg J (1985) Inorg Chem 26: 474

    Google Scholar 

  50. Spiccia L, Stoeckli-Evans H, Marty W, Giovanoli R (1986) Inorg Chem 24: 3496

    Google Scholar 

  51. Finholt JE, Thompson ME, Connick RE (1981) Inorg Chem 20: 4151

    Google Scholar 

  52. Stünzi H, Marty W (1983) Inorg Chem 22: 2145

    Google Scholar 

  53. Stünzi H, Rotzinger FP, Marty W (1984) Inorg Chem 20: 2160

    Google Scholar 

  54. Brown PL, Sylva RN, Batley GE, Ellis J (1985) J Chem Soc Dalton Trans 1967

    Google Scholar 

  55. Johansson G (1962) Acta Chem Scand 16: 403

    Google Scholar 

  56. Johansson G (1963) Arkiv Kemi 20: 305, 320

    Google Scholar 

  57. Akitt JW, Elders JM, Fontaine XLR, Kundu AK (1989) J Chem Soc Dalton Trans 1889

    Google Scholar 

  58. Van der Woude JHA, De Bruyn PL (1983) Colloids and Surfaces 8: 55, 79

    Google Scholar 

  59. Combes JM, Manceau A, Callas G, Bottero JY (1989) Geochimica Chemica Acta 53: 583

    Google Scholar 

  60. Brinker CJ, Scherer GW (1989) Sol-gel Science. Academic Press, New-York

    Google Scholar 

  61. Akitt JW, Gessner W (1984) J Chem Soc Dalton Trans 147

    Google Scholar 

  62. Baker BR, Pearson RM (1974) J Catal 33: 265

    Google Scholar 

  63. Yoldas BE (1972) J Appl Chem Biotech 23: 803

    Google Scholar 

  64. Eggleton RA, Fitzpatrick RW (1968) Clays and Clays Minerals 36: 111

    Google Scholar 

  65. Magini M (1977) J Inorg Nucl Chem 39: 409

    Google Scholar 

  66. Van der Woude JHA, Rijnbout JB, De Bruyn PL (1984) Colloids and Surfaces 11: 391

    Google Scholar 

  67. Van der Woude JHA, De Bruyn PL, Pieters J (1984) Colloids and Surfaces 9: 173

    Google Scholar 

  68. Chenavas J, Joubert JC, Capponi JJ (1973) J Solid State Chem 6: 1

    Google Scholar 

  69. Schneider W (1984) Comments Inorg Chem 3: 205

    Google Scholar 

  70. Patrat G, De Bergevin F, Pernet M, Joubert JC (1983) Acta Cryst B39: 165

    Google Scholar 

  71. Saraswat IP, Vajpei AC (1984) J Mater Sci Lett 3: 515

    Google Scholar 

  72. Spiccia L, Marty W, Giovanoli R (1987) Helv Chim Acta 70: 1737

    Google Scholar 

  73. Spiccia L, Marty W, Giovanoli R (1988) Inorg Chem 27: 2660

    Google Scholar 

  74. Christensen AN (1966) Inorg Chem 5: 1452

    Google Scholar 

  75. Hamilton WC, Ibers JA (1963) Acta Cryst 16: 1209

    Google Scholar 

  76. Ohtaki H, Yamaguchi T, Maeda M (1976) Bull Chem Soc Jpn 49: 701

    Google Scholar 

  77. Kolski GB, Kildahl NW, Margerum DW (1969) Inorg Chem 8: 1211

    Google Scholar 

  78. Johansson G, Olin A (1968) Acta Chem Scand 22: 3197

    Google Scholar 

  79. Perrin DD (1960) J Chem Soc 3189

    Google Scholar 

  80. Néher-Neumann E (1984) Acta Chem Scand A38: 517

    Google Scholar 

  81. Sylva RN, Davidson MR (1979) J Chem Soc Dalton Trans 232

    Google Scholar 

  82. Jaggi H, Ostwald HR (1961) Acta Cryst 14: 1041

    Google Scholar 

  83. Weiser HB (1923) J Phys Chem 27: 501

    Google Scholar 

  84. Hazell IF, Irving RJ (1966) J Chem Soc (A) 669

    Google Scholar 

  85. Ellis JD, Sykes AG (1973) J Chem Soc Dalton Trans 537

    Google Scholar 

  86. Ellis JD, Thompson AK, Sykes AG (1976) Inorg Chem 15: 3172

    Google Scholar 

  87. åberg M (1977) Acta Chem Scand B31: 171

    Google Scholar 

  88. Clearfield A (1964) Rev Pure Appl Chem 14: 91

    Google Scholar 

  89. Einaga H (1979) J Chem Soc Dalton Trans 1917

    Google Scholar 

  90. Einaga H, Komatsu Y (1981) J Inorg Nucl Chem 43: 2443

    Google Scholar 

  91. Bekkerman LI, Dobrovol'skii IP, Ivakin AA (1976) Russ J Inorg Chem 21: 223

    Google Scholar 

  92. Narita E, Takeuchi H, Horiguchi N, Okabe T (1984) Bull Chem Soc Jpn 57: 1388

    Google Scholar 

  93. Fryer JR, Hutchinson JL, Paterson R (1970) J Colloid Interface Sci 34: 238

    Google Scholar 

  94. Jolivet JP, Tronc E (1988) J Colloid Interface Sci 125: 688

    Google Scholar 

  95. Clearfield A (1988) Chem Rev 88: 125

    Google Scholar 

  96. Parida KM, Kanungo S, Sant BR (1984) Electrochim Acta 26: 435

    Google Scholar 

  97. Burns RG, Burns VM (1975) in: First MnO2 Symposium, p 306 Cleveland

    Google Scholar 

  98. Matijevic E (1986) Langmuir 2: 12

    Google Scholar 

  99. Ringbom A (1963) Complexation in Analytical Chemistry, Wiley, New York; Henry M, Jolivet JP, Livage J (1989) in: Uhlman DR, Ulrich DR (eds) 4th Int Conf on Ultrastructure Processing of Ceramics, Glasses and Composites, 19–24 Feb 1989. Tucson Arizona, USA

    Google Scholar 

  100. Clearfield A, Vaughan PA (1956) Acta Cryst 9: 555

    Google Scholar 

  101. Mak TCW (1968) Can J Chem 46: 3491

    Google Scholar 

  102. McWhan DB, Lundgren G (1963) Acta Cryst. 16: A36

    Google Scholar 

  103. Coddington JM, Howe RF, Taylor MJ (1989) Inorg Chim Acta 166: 13

    Google Scholar 

  104. Brahimi M, Durand J, Cot L (1988) Eur J Solid State Inorg Chem 25: 185

    Google Scholar 

  105. Hansson M (1973) Acta Chem Scand 27: 2614

    Google Scholar 

  106. Prozorovskaya ZN, Petrov KI, Komissarova LN (1968) Russ J Inorg Chem 13: 505

    Google Scholar 

  107. Paul RC, Baidya OB, Kumar RC, Kapoor R (1976) Aust J Chem 29: 1605

    Google Scholar 

  108. Zaitsev LM (1964) Russ J Inorg Chem 9: 1279

    Google Scholar 

  109. Baestlé L, Pelsmaekers J (1961) J Inorg Nucl Chem 21: 124

    Google Scholar 

  110. Livage J, Henry M, Jolivet JP, Sanchez C (1990) Mat Res Soc Bull 15: 18

    Google Scholar 

  111. Matwiyoff N, Darley PE, Movius WG (1968) Inorg Chem 7: 2173

    Google Scholar 

  112. Hunt JP, Friedman HL (1983) Prog Inorg Chem 30: 359

    Google Scholar 

  113. Kraus KA, Nelson F, Smith GW (1954) J Phys Chem 58: 11

    Google Scholar 

  114. Scott WB, Matijevic E (1978) J Colloid Interface Sci 66: 447

    Google Scholar 

  115. Akitt JW, Milic NB (1984) J Chem Soc Dalton Trans 981

    Google Scholar 

  116. Akitt JW, Elders JM, Fontaine XLR, Kundu AK (1989) J Chem Soc Dalton Trans 1897

    Google Scholar 

  117. Nordstrom DK, May HM (1989) in: Sposito G (ed) The environmental chemistry of aluminum, CRC Press, Boca Raton

    Google Scholar 

  118. Akitt JW, Greenwood NN, Lester GD (1971) J Chem Soc (A) 2450

    Google Scholar 

  119. Sjöberg S, öhman LO (1985) J Chem Soc Dalton Trans 2665

    Google Scholar 

  120. Nishide T, Tsuchiya R (1965) Bull Chem Soc Jpn 38: 1398

    Google Scholar 

  121. Akitt JW, Greenwood NN, Lester GD (1969) J Chem Soc Dalton Trans 803

    Google Scholar 

  122. Akitt JW, Farnsworth JA, Letellier P (1985) J Chem Soc Faraday Trans I 81: 193

    Google Scholar 

  123. Vogel RF, Marcelin G (1983) J Catal 80: 492

    Google Scholar 

  124. Mortier WJ, Ghosh SK, Shankar S (1986) J Am Chem Soc 105: 4315

    Google Scholar 

  125. Mortier WJ, Van Genechten K, Gasteiger J (1985) J Am Chem Soc 107: 829

    Google Scholar 

  126. Little EJ, Jones MM (1960) J Chem Educ 37: 231

    Google Scholar 

  127. Batsanov SS (1968) Russ J Struct Chem 37: 332

    Google Scholar 

  128. Zhang Y (1982) Inorg Chem 21: 3886

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Renata Reisfeld C. K. JJørgensen

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Henry, M., Jolivet, J.P., Livage, J. (1992). Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation. In: Reisfeld, R., JJørgensen, C.K. (eds) Chemistry, Spectroscopy and Applications of Sol-Gel Glasses. Structure and Bonding, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036968

Download citation

  • DOI: https://doi.org/10.1007/BFb0036968

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54374-9

  • Online ISBN: 978-3-540-47588-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics