Skip to main content

Presynaptic inhibition in the vertebrate central nervous system

  • Conference paper
  • First Online:
Ergebnisse der Physiologie Reviews of Physiology, Volume 63

Part of the book series: Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie ((ERGEBPHYSIOL,volume 63))

With 33 Figures

The experiments reported from this laboratory have been supported by the Deutsche Forschungsgemeinschaft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Group Ia:

from primary muscle spindle endings

Group Ib:

from Golgi tendon organs

Group II:

from secondary muscle spindle endings

Group III:

high threshold myelinated afferents

Group IV:

= C-fibres, unmyelinated

Group II:

low threshold myelinated afferents

Group III:

high threshold myelinated afferents

Group IV:

= C-fibres, unmyelinated

D-cell:

Dorsal horn interneurone on PAD reflex pathway

DCR:

Dorsal column reflex

DRP:

Dorsal root potential

DR-DRP:

Dorsal root potential evoked in the amphibian spinal cord by stimulation of dorsal roots

DRR:

Dorsal root reflex

EPSP:

Excitatory postsynaptic potential

IPSP:

Inhibitory postsynaptic potential

LGB:

Lateral geniculate body

N-wave:

Negative potential wave

PAD:

Primary afferent depolarization

PAH:

Primary afferent hyperpolarization

PC-receptor:

Rapidly adapting mechanoreceptor (Pacinian corpuscle)

FDHL:

flexor digitorum plus hallucis longus

GS:

gastrocnemius plus soleus

M:

median

PBST:

posterior biceps plus semitendinosus

PDP:

peroneal plus deep peroneal (flexor branches only)

PL:

plantaris

SU:

suralis

PT:

posterior tibial

SMAB:

semimembranosus plus anterior biceps

SP:

superficial peroneal

SR:

superficial radial

U:

ulnaris

P-wave:

positive potential wave

RA-receptor:

rapidly adapting mechanoreceptor of hairless skin

SA-receptor:

slowly adapting mechanoreceptor of hairless skin

SG-cell:

Substantia gelatinosa cell

VR-DRP:

dorsal root potential evoked in the amphibian spinal cord by stimulation of ventral roots

References

  • Andén, N. E., Jukes, M. G. M., Lundberg, A.: Spinal reflexes and monoamine liberation. Nature (Lond.) 202, 1222–1223 (1964).

    PubMed  Google Scholar 

  • — — —The effect of Dopa on the spinal cord. 2. A pharmacological analysis. Acta physiol. scand. 67, 387–397 (1966).

    PubMed  Google Scholar 

  • — — — Vyklický, L.: A new spinal flexor reflex. Nature (Lond.) 202, 1344–1345 (1964).

    PubMed  Google Scholar 

  • — — — —The effect of Dopa on the spinal cord. 1. Influence on transmission from primary afferents. Acta physiol. scand. 67, 373–380 (1966a).

    PubMed  Google Scholar 

  • — — — —The effect of Dopa on the spinal cord. 3. Depolarization evoked in the central terminals of ipsilateral Ia afferents by volleys in the flexor reflex afferents. Acta physiol. scand. 68, 322–336 (1966b).

    Google Scholar 

  • — Lundberg, A., Rosengren, E., Viklický, L.: The effect of Dopa on spinal reflexes from the FRA (flexor reflex afferents). Experientia (Basel) 19, 654–655 (1963).

    PubMed  Google Scholar 

  • Andersen, P., Brooks, Ch. McC., Eccles J. C., Sears, T. A.: The ventro-basal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and post-synaptic components. J. Physiol. (Lond.) 174, 348–369 (1964).

    PubMed  CAS  Google Scholar 

  • — Eccles, J. C., Oshima, T., Schmidt, R. F.: Mechanisms of synaptic transmission in the cuneate nucleus. J. Neurophysiol. 27, 1096–1116 (1964).

    PubMed  CAS  Google Scholar 

  • — — Schmidt, R. F.: Presynaptic inhibition in the cuneate nucleus. Nature (Lond.) 194, 741–743 (1962).

    PubMed  CAS  Google Scholar 

  • — — — Yokota, T.: Slow potential waves produced in the cuneate nucleus by cutaneous volleys and by cortical stimulation. J. Neurophysiol. 27, 78–91 (1964a).

    PubMed  CAS  Google Scholar 

  • — — — —Depolarizationof presynaptic fibers in the cuneate nucleus. J. Neurophysiol. 27, 92–106 (1964b).

    PubMed  CAS  Google Scholar 

  • — — — —Identification of relay cells and interneurons in the cuneate nucleus. J. Neurophysiol. 27, 1080–1095 (1964c).

    PubMed  CAS  Google Scholar 

  • — — Sears, T. A.: Presynaptic inhibitory action of cerebral cortex on the spinal cord. Nature (Lond.) 194, 740–743 (1962).

    PubMed  CAS  Google Scholar 

  • — — —Cortically evoked depolarization of primary afferent fibers in the spinal cord. J. Neurophysiol. 27, 63–77 (1964a).

    PubMed  CAS  Google Scholar 

  • — — —The ventro-basal complex of the thalamus: types of cells, their responses and their functional organization. J. Physiol. (Lond.) 174, 370–399 (1964b).

    PubMed  CAS  Google Scholar 

  • — Etholm, B., Gordon, G.: Presynaptic depolarization of dorsal column fibres by adequate stimulation. J. Physiol. (Lond.) 194, 83P–84P (1967).

    Google Scholar 

  • Angel, F., Magni, P., Strata, P.: Evidence from pre-synaptic inhibition in the lateral geniculate body. Nature (Lond.) 208, 495–496 (1965).

    Google Scholar 

  • — — —Excitability of intra-geniculate optic tract fibres after reticular stimulation in the midpontine pretrigeminal cat. Arch. ital. Biol. 103, 668–693 (1966).

    Google Scholar 

  • — — —The excitability of optic nerve terminals in the lateral geniculate nucleus after stimulation of visual cortex. Arch. ital. Biol. 105, 104–117 (1967).

    PubMed  CAS  Google Scholar 

  • — Strata, P.: Relationship between cortical activity and the excitability of optic nerve terminals in the lateral geniculate body. Brain Res. 5, 501–503 (1967).

    PubMed  CAS  Google Scholar 

  • Austin, G. M., McCouch, G. P.: Presynaptic component of intermediary cord potential. J. Neurophysiol. 18, 441–451 (1955).

    PubMed  CAS  Google Scholar 

  • Baldissera, F., Broggi, G.: An analysis of potential changes in the spinal cord during desynchronized sleep. Brain Res. 6, 706–715 (1967).

    PubMed  CAS  Google Scholar 

  • Baldissera, F., Broggi, G., Mancia, M.: Presynaptic inhibition of trigeminal afferent fibres during the rapid eye movements of desynchronized sleep. Experientia (Basel) 22, 754–755 (1966).

    Google Scholar 

  • — — —Depolarization of trigeminal afferents induced by stimulation of brain-stem and peripheral nerves. Exp. Brain Res. 4, 1–17 (1967).

    PubMed  CAS  Google Scholar 

  • — Cesa-Bianchi, M. G., Mancia, M.: Phasic events indicating presynaptic inhibition of primary afferents to the spinal cord during desynchronized sleep. J. Neurophysiol. 29, 871–887 (1966).

    PubMed  CAS  Google Scholar 

  • Banna, N. R., Hazbun, J.: Analysis of the convulsant action of pentylenetetrazol. Experientia (Basel) 25, 382–383 (1969).

    PubMed  CAS  Google Scholar 

  • — Jabbur, S. J.: Antagonism of presynaptic inhibition in the cuneate nucleus by picrotoxin. Nature (Lond.) 217, 83–84 (1968).

    PubMed  CAS  Google Scholar 

  • — —Pharmacological studies on inhibition in the cuneate nucleus of the cat. Int. J. Neuropharmacol. 8, 299–308 (1969).

    PubMed  CAS  Google Scholar 

  • — —The action of bemegride on presynaptic inhibition. Neuropharmacology 9, 553–560 (1970).

    PubMed  CAS  Google Scholar 

  • Barnes, C. D., Pompeiano, O.: Presynaptic inhibition of extensor monosynaptic reflex by Ia afferents from flexors. Brain Res. 18, 380–383 (1970a).

    PubMed  CAS  Google Scholar 

  • — —Effects of muscle vibration on the pre-and post-synaptic components of the extensor monosynaptic reflex. Brain Res. 18, 384–387 (1970b).

    PubMed  CAS  Google Scholar 

  • — —Inhibition of monosynaptic extensor reflex attributable to presynaptic depolarization of the group Ia afferent fibers produced by vibration of flexor muscle. Arch. ital. Biol. 108, 233–258 (1970c).

    PubMed  CAS  Google Scholar 

  • — —Presynaptic and postsynaptic effects in the monosynaptic reflex pathway to extensor motoneurons following vibration of synergic muscles. Arch. ital. Biol. 108, 259–294 (1970d).

    PubMed  CAS  Google Scholar 

  • Barron, D. H.: Central course of ‘recurrent’ sensory discharges. J. Neurophysiol. 3, 403–406 (1940).

    Google Scholar 

  • — Matthews, B. H. C.: Intermittent conduction in the spinal cord. J. Physiol. (Lond.) 85, 73–103 (1935).

    PubMed  CAS  Google Scholar 

  • — —The interpretation of potential changes in the spinal cord. J. Physiol. (Lond.) 92, 276–321 (1938).

    PubMed  CAS  Google Scholar 

  • Benoit, P. R., Mambrini, J.: Modification of transmitter release by ions which prolong the presynaptic action potential. J. Physiol. (Lond.) 210, 681–696 (1970).

    PubMed  CAS  Google Scholar 

  • Bernhard, C. G.: The cord dorsum potentials in relation to peripheral source of afferent stimulation. Cold Spr. Harb. Symp. quant. Biol. 17, 221–232 (1952).

    CAS  Google Scholar 

  • —The spinal cord potentials in leads from the cord dorsum in relation to peripheral source of afferent stimulation. Acta physiol. scand. 29, Suppl. 106, 1–29 (1953a).

    Google Scholar 

  • Analysis of the spinal cord potentials in leads from the cord dorsum. In: The spinal cord, Ciba Foundation Symp., p. 43–60, ed. G. E. W. Wolstenholem, London 1953b.

    Google Scholar 

  • — Koll, W.: On the effects of strychnine, asphyxia and dial on the spinal cord potentials. Acta physiol. scand. 29, Suppl. 106, 30–41 (1953).

    Google Scholar 

  • — Widén, L.: On the origin of the negative and positive cord potentials evoked by stimulation of low threshold cutaneous fibres. Acta physiol. scand. 29, Suppl. 106, 42–54 (1953).

    Google Scholar 

  • Bizzi, E.: Changes in the orthodromic and antidromic response of optic tract during the eye movements of sleep. J. Neurophysiol. 29, 861–870 (1966).

    PubMed  CAS  Google Scholar 

  • Bloedel, J., Gage, P. W., Linás, R., Quastel, D. M. J.: Transmitter release at the squid giant synapse in the presence of tetrodotoxin. Nature (Lond.) 212, 49–50 (1966).

    PubMed  CAS  Google Scholar 

  • — — — —Transmission across the squid giant synapse in the presence of tetrodotoxin. J. Physiol. (Lond.) 188, 52–53P (1967).

    Google Scholar 

  • Bonnet, V., Bremer, F.: Études des potentiels électriques de la moelle épinière faisant suite chez la grenouille spinale à une ou deux volées d’influx centripètes. C. R. Soc. Biol. (Paris) 127, 806–812 (1938).

    Google Scholar 

  • Bonnet, V., Bremir, F.: Du mécanisme de l’inhibition centrale. C. R. Soc. Biol. (Paris) 130, 760–767 (1939).

    Google Scholar 

  • — —La transmission synaptique dans la substance grise spinale. J. Physiol. Path. gén. 40, 117A–119A (1948).

    Google Scholar 

  • — —Les potentiels synaptiques et la transmission nerveuse centrale. Arch. int. Physiol. 60, 33–93 (1952).

    PubMed  CAS  Google Scholar 

  • Boyd, E. S., Meritt, D. A., Gardner, L. C.: The effect of convulsant drugs on transmission through the cuneate nucleus. J. Pharmacol. exp. Ther. 154, 398–409 (1966).

    PubMed  CAS  Google Scholar 

  • Braun, M., Schmidt, R. F.: Potential changes recorded from the frog motor nerve terminal during its activation. Pflügers Arch. ges. Physiol. 287, 56–80 (1966).

    CAS  Google Scholar 

  • Bravo, M. C., Molina, A. Fernandez de: Frog’s spinal cord potentials generated by stimulation of cutaneous nerves. J. Physiol. (Lond.) 155, 86–97 (1961).

    PubMed  CAS  Google Scholar 

  • Bremer, F.: Le tetanos strychnine et le mécanisme de la synchronisation neuronique. Arch. int. Physiol. 51, 211–260 (1941).

    Google Scholar 

  • —Le mode d’action de la strychnine à la lumière de travaux récents. Arch. int. Pharmacodyn. 69, 249–264 (1944).

    CAS  Google Scholar 

  • —Strychnine tetanus of the spinal cord. In: The spinal cord, Giba Found. Symp., ed. G. E. W. Wolstenholme. p. 78–83. London: Churchill 1953.

    Google Scholar 

  • — Bonnet, V.: Contributions à létude de la physiologie générale des centres nerveux. II. L’inhibition réflexe. Arch. int. Physiol., 52, 153–194 (1942).

    CAS  Google Scholar 

  • — —Les potentiels synaptiques et leur interprétation. Arch. Sci. physiol. 3, 489–520 (1949).

    Google Scholar 

  • Brooks, C. McC., Eccles, J. C., Malcolm, J. L.: Synaptic potentials of inhibited motoneurones. J. Neurophysiol. 11, 4147–430 (1948).

    Google Scholar 

  • — Fuortes, M. G. F.: The relation of dorsal and ventral root potentials to reflex activity in mammals. J. Physiol. (Lond.) 116, 380–394 (1952).

    PubMed  CAS  Google Scholar 

  • — Koizumi, K.: Origin of the dorsal root reflex. J. Neurophysiol. 19, 61–74 (1956).

    Google Scholar 

  • — — Malcolm, J. L.: Effects of changes in temperature on reactions of spinal cord. J. Neurophysiol. 18, 205–216 (1955).

    PubMed  CAS  Google Scholar 

  • Burke, R. E., Rudomin, P., Vyklický, L., Zajac, F. E.: Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin. J. Physiol. (Lond.) 213, 185–214 (1971).

    PubMed  CAS  Google Scholar 

  • Calma, I.: Presynaptic inhibition of the terminals of cutaneous nerve fibres by stimulation of the ventral thalamo-diencephalic region. J. Physiol. (Lond.) 185, 58P–60P (1966).

    Google Scholar 

  • — Quayle, A. A.: Repetitive antidromic discharges in fast cutaneous nerve fibers. Brain Res. 11, 268–272 (1968).

    PubMed  CAS  Google Scholar 

  • Cangiano, A., Cook, W. A., Pompeiano, O.: Primary afferent depolarization in the lumbar cord evoked from the fastigial nucleus. Arch. ital. Biol. 107, 321–340 (1969a).

    PubMed  CAS  Google Scholar 

  • — — —Cerebellar inhibitory control of the vestibular reflex pathways to primary afferents. Arch. ital. Biol. 107, 341–364 (1969b).

    PubMed  CAS  Google Scholar 

  • Carli, G., Diete-Spiff, K., Pompeiano, O.: Presynaptic and postsynaptic inhibition on transmission of cutaneous afferent volleys through the cuneate nucleus during sleep. Experientia (Basel) 22, 239–240 (1966).

    PubMed  CAS  Google Scholar 

  • Carlsson, C. B.: Sodium and the dorsal root potential. J. Physiol. (Lond.) 172, 295–304 (1964).

    Google Scholar 

  • — Falck, B., Fuxe, K., Hillarp, N.: Cellular localization of monoamines in the spinal cord. Acta physiol. scand. 60, 112–119 (1964).

    PubMed  CAS  Google Scholar 

  • Carpenter, D., Engberg, I., Lundberg, A.: Presynaptic inhibition in the lumbar cord evoked from the brain stem. Experientia (Basel) 18, 450–451 (1962).

    PubMed  CAS  Google Scholar 

  • — — —Primary afferent depolarization evoked from the brain stem and the cerebellum. Arch. ital. Biol. 104, 73–85 (1966).

    PubMed  CAS  Google Scholar 

  • — Lundberg, A., Norrsell, U.: Effects from the pyramidal tract on primary afferents and on spinal reflex actions to primary afferents. Experientia (Basel) 18, 337–338 (1962).

    PubMed  CAS  Google Scholar 

  • Carpenter, D., Engberg, I., Lundberg, A.; Primary afferent depolarization evoked from the sensorimotor cortex. Acta physiol. scand. 59, 126–142 (1963).

    PubMed  CAS  Google Scholar 

  • Castillo, J. Del, Katz, B.: Changes in end-plate activity produced by presynaptic polarization. J. Physiol. (Lond.) 124, 586–604 (1954a).

    Google Scholar 

  • — —: The membrane change produced by the neuromuscular transmitter. J. Physiol. (Lond.) 125, 546–565 (1954b).

    Google Scholar 

  • Cesa-Bianchi, M. G., Mancia, M., Sotgiu, M. L.: Depolarization of afferent fibers to the Goll and Burdach nuclei induced by stimulation of the brain-stem. Exp. Brain Res. 5, 1–15 (1968).

    PubMed  CAS  Google Scholar 

  • Chambers, W. W., Liu, Ch. N., McCouch, G. P.: Inhibition of the dorsal column nuclei. Exp. Neurol. 7, 13–23 (1963).

    PubMed  CAS  Google Scholar 

  • Chu, N.-S.: Dorsal root potentials: effects of acoustic and visual stimuli. Brain Res. 18, 189–191 (1970).

    PubMed  CAS  Google Scholar 

  • Colonnier, M., Guillery, R. W.: Synaptic organization in the lateral geniculate nucleus of the monkey. Z. Zellforsch. 62, 333–355 (1964).

    PubMed  CAS  Google Scholar 

  • Conradi, S.: On motoneuron synaptology in adult cats. Acta physiol. scand., Suppl. 332, 1–115 (1969).

    Google Scholar 

  • Cook, W. A., Cangiano, A., Pompeiano, O.: Vestibular influences on primary afferents in the spinal cord. Pflügers Arch. ges. Physiol. 289, 334–338 (1968).

    Google Scholar 

  • — — —Dorsal root potentials in the lumbar cord evoked from the vestibular system. Arch. ital. Biol. 107, 275–295 (1969a).

    PubMed  Google Scholar 

  • — — —Vestibular control of transmission in primary afferents to the lumbar spinal cord. Arch. ital. Biol. 107, 296–320 (1969b).

    PubMed  Google Scholar 

  • — Neilson, D. R., Brookhart, J. M.: Primary afferent depolarization and monosynaptic reflex depression following succinylcholine administration. J. Neurophysiol. 28, 280–311 (1965).

    Google Scholar 

  • Coombs, J. S., Curtis, D. R., Landgren, S.: Spinal cord potentials generated by impulses in muscle and cutaneous afferent fibers. J. Neurophysiol. 19, 452–467 (1956).

    PubMed  CAS  Google Scholar 

  • Creutzfeldt, O., Sakman, B.: Neurophysiology of vision. Ann. Rev. Physiol. 31, 499–544 (1969).

    CAS  Google Scholar 

  • Curtis, D. R.: The pharmacology of central and peripheral inhibition. Pharmacol. Rev. 15, 333–364 (1963).

    PubMed  CAS  Google Scholar 

  • —Pharmacology and neurochemistry of mammalian central inhibitory processes. In: Structure and function of inhibitory neuronal mechanisms, ed. C. von Euler, S. Skoglund, U. Söderberg, p. 429–456. Oxford-New York: Pergamon Press 1969.

    Google Scholar 

  • —The pharmacology of spinal postsynaptic inhibition. Progr. in Brain Res. 31, 171–189 (1969).

    CAS  Google Scholar 

  • — Duggan, A. W., Felix, D., Johnston, G. A. R.: GABA, bicuculline and central inhibition. Nature (Lond.) 226, 1222–1224 (1970a).

    PubMed  CAS  Google Scholar 

  • — — — —Bicuculline and central GABA receptors. Nature (Lond.) 228, 676–677 (1970b).

    PubMed  CAS  Google Scholar 

  • — Eccles, J. C.: Synaptic action during and after repetitive stimulation. J. Physiol. (Lond.) 150, 374–398 (1960).

    PubMed  CAS  Google Scholar 

  • — Phillis, J. W., Watkins, J. C.: Actions of amino acids on the isolated hemisected spinal cord of the toad. Brit. J. Pharmacol. 16, 262–283 (1961).

    PubMed  CAS  Google Scholar 

  • — Ryall, R. W.: Pharmacological studies upon spinal presynaptic fibres. Exp. Brain Res. 1, 195–204 (1966).

    PubMed  CAS  Google Scholar 

  • Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbo-spinal neuron systems. Acta physiol. scand. 64, Suppl. 247, 1–85 (1965).

    Google Scholar 

  • Darian-Smith, I.: Presynaptic component in the afferent inhibition observed within trigeminal brain-stem nuclei of the cat. J. Neurophysiol. 28, 695–709 (1965).

    PubMed  CAS  Google Scholar 

  • Darian-Shmith, I., Yokota, T.: Cortically evoked depolarization of trigeminal cutaneous afferent fibres in the cat. J. Neurophysiol. 29, 170–184 (1966a).

    Google Scholar 

  • — —Corticofugal effects on different neuron types within the cat’s brain stem activated by tactile stimulation on the face. J. Neurophysiol. 29, 185–206 (1966b).

    Google Scholar 

  • Davidson, N., Ryder, C. A.: Interneurone responses in the rat cuneate nucleus. J. Physiol. (Lond.) 204, 79P (1969).

    Google Scholar 

  • Dawson, G. D., Merrill, E. G., Wall, P. D.: Dorsal root potentials produced by stimulation of fine afferents. Science 167, 1385–1387 (1970).

    Google Scholar 

  • Decandia, M., Gasteiger, E. L., Mann, M. D.: Escape of the extensor monosynaptic reflex from presynaptic inhibition. Brain Res. 7, 317–319 (1968).

    PubMed  CAS  Google Scholar 

  • — Provini, L., Tábóríková, H.: Excitability changes in the Ia extensor terminals induced by stimulation of agonist afferent fibres. Brain Res. 2, 402–404 (1966).

    PubMed  CAS  Google Scholar 

  • — — —Presynaptic inhibition of the monosynaptic reflex following the stimulation of nerves to extensor muscles of the ankle. Exp. Brain Res. 4, 34–42 (1967).

    Google Scholar 

  • Decima, E. E.: An effect of postsynaptic neurons upon presynaptic terminals. Proc. nat. Acad. Sci. (Wash.) 63, 58–64 (1969).

    PubMed  CAS  Google Scholar 

  • — Goldberg, L. J.: Time course of excitability changes of primary afferent terminals as determined by motoneuron-presynaptic interaction. Brain Res. 15, 288–290 (1969).

    PubMed  CAS  Google Scholar 

  • — —Centrifugal dorsal root discharges induced by motoneurone activation. J. Physiol. (Lond.) 207, 103–118 (1970).

    PubMed  CAS  Google Scholar 

  • Devanandan, M. S., Eccles, R. M., Stenhouse, D.: Presynaptic inhibition evoked by muscle contraction. J. Physiol. (Lond.) 185, 471–485 (1966).

    PubMed  CAS  Google Scholar 

  • — — Yokota, T.: Presynaptic inhibition induced by muscle stretch. Nature (Lond.) 204, 996–998 (1964).

    PubMed  CAS  Google Scholar 

  • — — —Depolarization of afferent terminals evoked by muscle stretch. J. Physiol. (Lond.) 179, 417–429 (1965a).

    PubMed  CAS  Google Scholar 

  • — — —Muscle stretch and the presynaptic inhibition of the group Ia pathway to motoneurones. J. Physiol. (Lond.) 179, 430–441 (1965b).

    PubMed  CAS  Google Scholar 

  • — Holmqvist, B., Yokota, T.: Presynaptic depolarization of group I muscle afferents by contralateral afferent volleys. Acta physiol. scand 63, 46–54 (1965).

    PubMed  CAS  Google Scholar 

  • Dubner, R., Sessle, B. J., Gobel, S.: Presynaptic depolarization of corticofugal fibres participating in a feedback loop between trigeminal brain stem nuclei and sensorimotor cortex. Nature (Lond.) 223, 72–73 (1969).

    PubMed  CAS  Google Scholar 

  • Duda, P., Kostyuk, P. G., Preobrazhensky, N. N.: Inhibition of synaptic potentials in motoneurons during repetitive visceromotor stimulation. Bull. exp. Biol. Med. 62, No 7, 3–8 (1966).

    CAS  Google Scholar 

  • Dudel, J.: Presynaptic inhibition of the excitatory nerve terminal in the neuromuscular junction of the crayfish. Pflügers Arch. ges. Physiol. 277, 537–557 (1963).

    CAS  Google Scholar 

  • —Potential changes in the crayfish motor nerve terminal during repetitive stimulation. Pflügers Arch. ges. Physiol. 282, 323–337 (1965).

    CAS  Google Scholar 

  • — Kuffler, S. W.: Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. (Lond.) 155, 543–562 (1961).

    PubMed  CAS  Google Scholar 

  • Dun, F. T.: The dorsal root potential in the frog. J. Physiol. (Lond.) 95, 41–43 (1939).

    Google Scholar 

  • —The latency and conduction of potentials in the spinal cord of the frog. J. Physiol. (Lond.) 100, 283–298 (1941).

    PubMed  CAS  Google Scholar 

  • —Restoration of dorsal root potential by strychnine after abolition by partial sectioning of spinal cord. Proc. exp. Biol. Med. 49, 479–480 (1942).

    Google Scholar 

  • — Feng, T. P.: A note on the two components of the dorsal root potential. J. Neurophysiol. 7, 327–329 (1944).

    Google Scholar 

  • Eccles, J. C.: The spinal cord and reflex action. Ann. Rev. Physiol. 1, 363–384 (1939).

    CAS  Google Scholar 

  • —Acetylcholine and synaptic transmission in the spinal cord. J. Neurophysiol. 10, 197–204 (1947).

    PubMed  CAS  Google Scholar 

  • —The neurophysiological basis of mind. The principles of neurophysiology, 314 p. Oxford: Clarendon Press 1953.

    Google Scholar 

  • Eccles, J. C.: The Physiology of Nerve Cells. Baltimore: John Hopkins Press 1957.

    Google Scholar 

  • —The nature of central inhibition. Proc. roy. Soc. B 153, 445–476 (1961a).

    Google Scholar 

  • —The mechanism of synaptic transmission. Ergebn. Physiol. 51, 299–430 (1961b).

    PubMed  CAS  Google Scholar 

  • —Postsynaptic and presynaptic inhibitory actions in the spinal cord. In: Progress in brain research vol. 1, Brain mechanisms, ed. G. Moruzzi, A. Fessard and H. H. Jaspers, p. 1–22. Amsterdam: Elsevier Publ. Comp. 1963.

    Google Scholar 

  • — The physiology of synapses, p. 1–316. Berlin-New York-Heidelberg: 1964 (1964a).

    Google Scholar 

  • —Presynaptic inhibition in the spinal cord. In: Progress in brain research, vol. 12, Physiology of spinal neurons, ed. J. C. Eccles and J. P. Schadé, p. 65–91. Amsterdam: Elsevier Publ. Comp. 1964, (1964b).

    Google Scholar 

  • —Pharmacology of central inhibitory synapses. Brit. med. Bull. 21, 19–25 (1965).

    PubMed  CAS  Google Scholar 

  • Eccles, R. M., Magni, F.: Presynaptic inhibition in the spinal cord. J. Physiol. (Lond.) 154, 28P (1960).

    Google Scholar 

  • — — —Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. (Lond.) 159, 147–166 (1961).

    PubMed  CAS  Google Scholar 

  • — Kostyuk, P. G., Schmidt, R. F.: Central pathways responsible for depolarization of primary afferent fibres. J. Physiol. (Lond.) 161, 237–257 (1962a).

    PubMed  CAS  Google Scholar 

  • — — —Presynaptic inhibition of the central actions of flexor reflex afferents. J. Physiol. (Lond.) 161, 258–281 (1962b).

    PubMed  CAS  Google Scholar 

  • — — —The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action. J. Physiol. (Lond.) 162, 138–150 (1962c).

    PubMed  CAS  Google Scholar 

  • — Kozak, W., Magni, F.: Dorsal root reflexes of muscle group I afferent fibres. J. Physiol. (Lond.) 159, 128–146 (1961).

    PubMed  CAS  Google Scholar 

  • — Krnjević, K.: Potential changes recorded inside primary afferent fibres within the spinal cord. J. Physiol. (Lond.) 149, 250–273 (1959a).

    PubMed  CAS  Google Scholar 

  • — —Presynaptic changes associated with post-tetanic potentiation in the spinal cord. J. Physiol. (Lond.) 149, 274–287 (1959b).

    PubMed  CAS  Google Scholar 

  • — Magni, F., Willis, W. D.: Depolarization of central terminals of group I afferent fibres from muscle. J. Physiol. (Lond.) 160, 62–93 (1962).

    PubMed  CAS  Google Scholar 

  • — Malcolm, J. L.: Dorsal root potentials of the spinal cord. J. Neurophysiol. 9, 139–160 (1946).

    PubMed  CAS  Google Scholar 

  • — Rall, W.: Effects induced in a monosynaptic reflex path by its activation. J. Neurophysiol. 14, 353–376 (1951).

    PubMed  CAS  Google Scholar 

  • — Schmidt, R. F., Willis, W. D.: Presynaptic inhibition of the spinal monosynaptic reflex pathway. J. Physiol. (Lond.) 161, 282–297 (1962).

    PubMed  CAS  Google Scholar 

  • — — —Depolarization of central terminals of group Ib afferent fibers from muscle. J. Neurophysiol. 26, 1–27 (1963a).

    Google Scholar 

  • — — —The location and the mode of action of the presynaptic inhibitory pathways on to group I afferent fibers from muscle. J. Neurophysiol. 26, 506–622 (1963b).

    Google Scholar 

  • — — —The mode of operation of the synaptic mechanism producing presynaptic inhibition. J. Neurophysiol. 26, 523–538 (1963c).

    Google Scholar 

  • — — —Inhibition of discharge into the dorsal and ventral spinocerebellar tracts. J. Neurophysiol. 26, 635–645 (1963d).

    Google Scholar 

  • — — —Depolarization of the central terminals of cutaneous afferent fibers. J. Neurophysiol. 26, 646–661 (1963e).

    Google Scholar 

  • — — —Pharmacological studies on presynaptic inhibition. J. Physiol. (Lond.) 168, 500–530 (1963f).

    PubMed  CAS  Google Scholar 

  • — Sherrington, C. S.: Studies on the flexor reflex. VI. Inhibition. Proc. roy. Soc. B 109, 91–113 (1931).

    Google Scholar 

  • Eccles, R. M., Holmqvist, B., Voorhoeve, P. E.: Presynaptic inhibition from contralateral cutaneous afferent fibres. Acta physiol. scand. 62, 464–473 (1964a).

    PubMed  CAS  Google Scholar 

  • — — —Presynaptic depolarization of cutaneous afferents by volleys in contralateral muscle afferents. Acta physiol. scand. 62, 474–484 (1964b).

    PubMed  CAS  Google Scholar 

  • Eccles, R. M., Lundberg, A.: Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch. ital. Biol. 97, 199–221 (1959).

    Google Scholar 

  • — Willis, W. D.: Presynaptic inhibition of the monosynaptic reflex pathway in kittens. J. Physiol. (Lond.) 165, 403–420 (1962).

    Google Scholar 

  • Eide, E., Jurna, I., Lundberg, A.: Conductance measurements from motoneurons during presynaptic inhibition. In: Structure and function of inhibitory neuronal mechanisms, ed. C. von Euler, S. Skoglund, U. Söderberg, p. 215–219. Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • Eisemann, G., Rudin, D. O.: The compound origin of potential in a stimulated dorsal root. J. gen. Physiol. 37, 781–793 (1954).

    Google Scholar 

  • Elliott, K. A. C., Florey, E.: Factor I — Inhibitory factor from brain. Assay. Conditions in brain. Simulating and antagonizing substances. J. Neurochem. 1, 181–191 (1956).

    PubMed  CAS  Google Scholar 

  • Engberg, I., Lundberg, A., Ryall, R. W.: Reticulospinal inhibition of transmission in reflex pathways. J. Physiol. (Lond.) 194, 201–223 (1968).

    PubMed  CAS  Google Scholar 

  • Fadiga, E., Brookhart, J. M.: Monosynaptic activation of different portions of the motor neuron membrane. Amer. J. Physiol. 198, 693–703 (1960).

    PubMed  CAS  Google Scholar 

  • Fatt, P.: Biophysics of junctional transmission. Physiol. Rev. 34, 674–710 (1954).

    PubMed  CAS  Google Scholar 

  • — Katz, B.: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).

    PubMed  CAS  Google Scholar 

  • Fedina, L., Gordon, G., Lundberg, A.: The source and mechanisms of inhibition in the lateral cervical nucleus of the cat. Brain Res. 11, 694–696 (1968).

    PubMed  CAS  Google Scholar 

  • Felix, D., Wiesendanger, M.: Cortically induced inhibition in the dorsal column nuclei of monkeys. Pflügers Arch. 320, 285–288 (1970).

    PubMed  CAS  Google Scholar 

  • Fetz, E. E.: Pyramidal tract effects on interneurons in the cat lumbar dorsal horn. J. Neurophysiol. 31, 69–80 (1968).

    PubMed  CAS  Google Scholar 

  • Florey, E.: Comparative physiology: Transmitter substances. Ann. Rev. Physiol. 23, 501–528 (1961).

    CAS  Google Scholar 

  • —Amino acids as transmitter substances. In: Major problems in neuroendocrinology, ed. Bajusz, E., and Jasmin, G., p. 17–41. Basel: S. Karger 1964.

    Google Scholar 

  • Forbes, A., Querido, A., Withaker, L. R., Hurxthal, L. M.: Electrical studies in mammalian reflexes. V. The flexion reflex in response to two stimuli as recorded from the motor nerve. Amer. J. Physiol. 85, 432–457 (1928).

    Google Scholar 

  • Frank, K.: Basic mechanisms of synaptic transmission in the central nervous system. I.R.E. Trans. Med. Electronics. ME-6, 85–88 (1959).

    Google Scholar 

  • — Fuortes, M. G. F.: Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc. 16, 39–40 (1957).

    Google Scholar 

  • Frankstein, S. I., Sergeeva, Z. N.: Presynaptic inhibition and the inhibitory Hering-Breuer reflex. Exp. Neurol. 19, 232–235 (1967).

    PubMed  CAS  Google Scholar 

  • Franz, D. N., Iggo, A.: Dorsal root potentials and ventral root reflexes evoked by nonmyelinated fibers. Science 162, 1140–1142 (1968).

    PubMed  CAS  Google Scholar 

  • Fuortes, M. G. F.: Potential changes of the spinal cord following different types of afferent excitation. J. Physiol. (Lond.) 113, 372–386 (1951).

    PubMed  CAS  Google Scholar 

  • Furshpan, E. J.: Neuromuscular transmission in invertebrates. Handbook of physiology, ed. J. Field, section 1: Neurophysiology, vol. 1, p. 239–254. Washington, D.C.: American Physiological Society 1959.

    Google Scholar 

  • Galindo, A.: GABA-picrotoxin interaction in the mammalian central nervous system. Brain Res. 14, 763–767 (1969).

    PubMed  CAS  Google Scholar 

  • Gasser, H. S.: The control of excitation in the nervous system. Harvey Lect. 32, 169–193 (1937).

    Google Scholar 

  • — Graham, H. T.: Potentials produced in the spinal cord by stimulation of the dorsal roots. Amer. J. Physiol. 103, 303–320 (1933).

    Google Scholar 

  • Gerard, R. W., Forbes, A.: “Fatigue” of the flexion reflex. Amer. J. Physiol. 86, 186–205 (1928).

    Google Scholar 

  • Gillies, J. D., Lange, J. W., Neilson, P. D., Tassinari, C. A.: Presynaptic inhibition of the monosynaptic reflex by vibration. J. Physiol. (Lond.) 205, 329–339 (1969).

    PubMed  CAS  Google Scholar 

  • Gobel, S., Dubner, R.: Axo-axonic synapses in the main sensory trigeminal nucleus. Experientia (Basel) 24, 1250–1251 (1968).

    PubMed  CAS  Google Scholar 

  • — —Fine structural studies of the main sensory trigeminal nucleus in the cat and rat. J. comp. Neurol. 137, 459–493 (1969).

    PubMed  CAS  Google Scholar 

  • Godfraind, J. M., Krnjević, K., Pumain R.: Doubtful value of bicuculline as a specific antagonist of GABA. Nature (Lond.) 228, 675–676 (1970).

    PubMed  CAS  Google Scholar 

  • Göpfert, H. F.: Slow potentials in the dorsal parts of the isolated spinal cord and their relation to dorsal root potentials. J. Physiol. (Lond.) 133, 433–445 (1956).

    Google Scholar 

  • Granit, R.: The case for presynaptic inhibition by synapses on the terminals of motoneurons. In: Structure and function of inhibitory neuronal mechanisms, ed. C. von Euler, S. Skoglund, U. Söderberg, Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • — Kellerth, J.-O., Williams, T. D.: “Adjacent” and “remote” post-synaptic inhibition in motoneurones stimulated by muscle stretch. J. Physiol. (Lond.) 174, 453–472 (1964).

    PubMed  CAS  Google Scholar 

  • Gray, E. G.: A morphological basis for pre-synaptic inhibition? Nature (Lond.) 193, 82–83 (1962).

    PubMed  CAS  Google Scholar 

  • —Electron microscopy of presynaptic organelles of the spinal cord. J. Anat. (Lond.) 97, 101–106 (1963).

    PubMed  CAS  Google Scholar 

  • Green, D. G., Kellerth, J. O.: Postsynaptic versus presynaptic inhibition in antagonistic stretch reflexes. Science 152, 1097–1099 (1966).

    PubMed  CAS  Google Scholar 

  • Grinnell, A. D.: A study of the interaction between motoneurones in the frog spinal cord. J. Physiol. (Lond.) 182, 612–648 (1966).

    PubMed  CAS  Google Scholar 

  • Groves, P. M., Glanzman, D. L., Patterson, M. M., Thompson, R. F.: Excitability of cutaneous afferent terminals during habituation and sensitization in acute spinal cat. Brain Res. 18, 388–391 (1970).

    PubMed  CAS  Google Scholar 

  • Grundfest, H., Magnes, J.: Excitability changes in dorsal roots produced by electrotonic effects from adjacent afferent activity. Amer. J. Physiol. 164, 502–508 (1951).

    PubMed  CAS  Google Scholar 

  • — Reuben, J. P.: Neuromuscular synaptic activity in lobster. In: Nervous inhibition, ed. E. Florey, p. 92–104. Oxford: Pergamon Press 1961.

    Google Scholar 

  • — — Rickles, N. H.: The electrophysiology and pharmacology of lobster neuromuscular synapse. J. gen. Physiol. 42, 1301–1324 (1959).

    PubMed  CAS  Google Scholar 

  • Guzmán-Flores, C., Buendia, N., Anderson, C., Lindsley, D. B.: Cortical and reticular influences upon evoked responses in dorsal column nuclei. Exp. Neurol. 5, 37–346 (1962).

    PubMed  Google Scholar 

  • Habgood, J. S.: Antidromic impulses in the dorsal root. J. Physiol. (Lond.) 121, 264–274 (1953).

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., Tasaki, I.: A study of the mechanism of impulse transmission across the giant synapse of the squid. J. Physiol. (Lond.) 143, 114–137 (1958).

    PubMed  CAS  Google Scholar 

  • Hammer, B., Tarnecki, R., Vycklický, L., Wiesendanger, M.: Corticofugal control of presynaptic inhibition in the spinal trigeminal complex of the cat. Brain Res. 2, 216–218 (1966).

    Google Scholar 

  • Hámori, J.: Presynaptic-to-presynaptic axon contacts under experimental conditions giving rise to rearrangement of synaptic structures. In: Structure and function of inhibitory neuronal mechanisms, p. 71–80, ed.: G. v. Euler, S. Skoglund, U. Söderberg. Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • Hancock, M. B., Willis, W. D., Harrison, F.: Viscerosomatic interactions in lumbar spinal cord of the cat. J. Neurophysiol. 33, 46 58 (1970).

    Google Scholar 

  • Hepp-Reymond, M.-G., Wiesendanger, M.: Pyramidal influence on the spinal trigeminal nucleus of the cat. Arch. ital. Biol. 107, 54–66 (1969).

    PubMed  CAS  Google Scholar 

  • Hernández-Peón, R., Hagbarth, K. E.: Interaction between afferent and cortically induced reticular responses. J. Neurophysiol. 18, 44–55 (1955).

    PubMed  Google Scholar 

  • Holemans, K. C., Meij, H. S.: An analysis of some inhibitory mechanisms in the spinal cord of the frog (Xenopus laevis). Pflügers Arch. 303, 287–310 (1968a).

    Google Scholar 

  • — —Disinhibition processes in the cord of the spinal frog. Pflügers Arch. 303, 311–323 (1968b).

    PubMed  CAS  Google Scholar 

  • Hongo, T., Jankowska, E.: Effects from the sensorimotor cortex on the spinal cord in cats with transected pyramids. Exp. Brain Res. 3, 117–134 (1967).

    PubMed  CAS  Google Scholar 

  • — Okada, Y.: Cortically evoked pre-and postsynaptic inhibition of impulse transmission on the dorsal spinocerebellar tract. Exp. Brain Res. 3, 163–177 (1967).

    PubMed  CAS  Google Scholar 

  • Houk, J., Henneman, E.: Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967).

    PubMed  CAS  Google Scholar 

  • Howland, B., Lettvin, J. Y., McCulloch, W. S., Pitts, W., Wall, P. D.: Reflex inhibition by dorsal root interaction. J. Neurophysiol. 18, 1–17 (1955).

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., Schmidt, R. F.: Repetitive activation of motor nerve endings. Nature (Lond.) 196, 378–379 (1962).

    PubMed  CAS  Google Scholar 

  • — —An electrophysiological investigation of mammalian motor nerve terminals. J. Physiol. (Lond.) 166, 145–165 (1963).

    PubMed  CAS  Google Scholar 

  • — Willis, W. D.: The effects of depolarization of motor nerve terminals upon the release of transmitter by nerve impulses. J. Physiol. (Lond.) 194, 381–405 (1968).

    PubMed  CAS  Google Scholar 

  • Hudson, R. D., Wolpert, M. K.: Central muscle relaxant effects of diazepam. Neuropharmacology 9, 481–488 (1970).

    PubMed  CAS  Google Scholar 

  • Hughes, J., Gasser, H. S.: The response of the spinal cord to two afferent volleys. Amer. J. Physiol. 108, 307–321 (1934).

    Google Scholar 

  • Iwama, K., Kawamoto, T., Sakakura, H., Kasamatsu, T.: Responsiveness of cat lateral geniculate at pre-and postsynaptic levels during natural sleep. Physiol. Behav. 1, 45–53 (1966).

    Google Scholar 

  • — Sakakura, H., Kasamatsu, T.: Presynaptic inhibition in the lateral geniculate body induced by stimulation of the cerebral cortex. Jap. J. Physiol. 15, 310–322 (1965).

    Google Scholar 

  • Jabbur, S. J., Banna, N. R.: Presynaptic inhibition of cuneate transmission by widespread cutaneous inputs. Brain Res. 10, 273–276 (1968).

    PubMed  CAS  Google Scholar 

  • — —Widespread cutaneous inhibition in dorsal column nuclei. J. Neurophysiol. 33, 616–624 (1970).

    PubMed  CAS  Google Scholar 

  • — Towe, A. L.: Cortical excitation of neurons in dorsal column nuclei of cat, including an analysis of pathways. J. Neurophysiol. 24, 499–509 (1961).

    PubMed  CAS  Google Scholar 

  • Jänig, W., Schmidt, R. F., Zimmermann, M.: Presynaptic depolarization during activation of tonic mechanoreceptors. Brain Res. 5, 514–516 (1967).

    PubMed  Google Scholar 

  • — — —Single unit responses and the total afferent outflow from the cat’s foot pad upon mechanical stimulation. Exp. Brain Res. 6, 100–115 (1968a).

    PubMed  Google Scholar 

  • — — —Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Exp. Brain Res. 6, 116–129 (1968b).

    PubMed  Google Scholar 

  • Zimmermann, M.: Presynaptic depolarization of myelinated afferent fibres evoked by stimulation of cutaneous C fibres. J. Physiol. (Lond.) 214 (in press) (1971).

    Google Scholar 

  • Jankowska, E., Jukes, M. G. M., Lund, S.: On the presynaptic inhibition of transmission to the dorsal spinocerebellar tract. J. Physiol. (Lond.) 177, 19–21P (1964).

    Google Scholar 

  • — — — The pattern of presynaptic inhibition of transmission to the dorsal spinocerebellar tract. J. Physiol. (Lond.) 178, 17–18P (1965).

    Google Scholar 

  • — Lund, S., Lundberg, A.: The effect of DOPA on the spinal cord. 4. Depolarization evoked in the central terminals of contralateral Ia. Afferent terminals by volleys in the flexor reflex afferents. Acta physiol. scand. 68, 337–341 (1966).

    CAS  Google Scholar 

  • Kahn, N., Magni, F., Pillai, R. V.: Depolarization of optic fibre endings in the lateral geniculate body. Arch. ital. Biol. 105, 573–582 (1967).

    PubMed  CAS  Google Scholar 

  • Katz, B.: The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc. roy. Soc. B 155, 455–477 (1962).

    Google Scholar 

  • — Miledi, R.: Input-output relation of a single synapse. Nature (Lond.) 212, 1242–1245 (1966).

    PubMed  CAS  Google Scholar 

  • Katz, B., Miledi, R.: Tetrodotoxin and neurouscular transmission. Proc. roy. Soc. B 167, 8–22 (1967a).

    Google Scholar 

  • — —The release of acetylcholine from nerve endings by graded electric pulses. Proc. roy. Soc. B 167, 23–28 (1967b).

    Google Scholar 

  • — —A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192, 407–436 (1967c).

    PubMed  CAS  Google Scholar 

  • Kawamura, H., Marchiafava, D. L.: Modulation of transmission of optic nerve impulse in the alert cat: evidence of presynaptic inhibition of primary optic afferents during ocular movements. Brain Res. 1, 213–215 (1966).

    PubMed  CAS  Google Scholar 

  • Kellerth, J.-O.: A strychnine-resistant postsynaptic inhibition in the spinal cord. Acta physiol. scand. 63, 469–471 (1965).

    PubMed  CAS  Google Scholar 

  • —Aspects on the relative significance of pre-and postsynaptic inhibition in the spinal cord. In: Structure and functions of inhibitory neuronal mechanisms, ed. C. von Euler, S. Skoglund. U. Söderberg, Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • — Szumski, A. J.: Two types of stretch-activated post-synaptic inhibitions in spinal motoneurons as differentiated by strychnine. Acta physiol. scand. 66, 133–145 (1966a).

    PubMed  CAS  Google Scholar 

  • — —Effects of picrotoxin on stretch-activated postsynaptic inhibitions in spinal motoneurons. Acta physiol. scand. 66, 146–156 (1966b).

    PubMed  CAS  Google Scholar 

  • Kerr, F. W. L.: The ultrastructure of the spinal tract of the trigeminal nerve and the substantia gelatinosa. Exp. Neurol. 16, 359–376 (1966).

    PubMed  CAS  Google Scholar 

  • —The organization of primary afferents in the subnucleus caudalis of the trigeminal: A ligh and electron microscopic study of degeneration. Brain Res. 23, 147–165 (1970).

    PubMed  CAS  Google Scholar 

  • Khattab, F. J.: A complex synaptic apparatus in spinal cord of cats. Experientia (Basel) 24, 690–691 (1968).

    PubMed  CAS  Google Scholar 

  • Kiraly, J. K., Phillis, J. W.: Action of some drugs on the dorsal root potentials of the isolated toad spinal cord. Brit. J. Pharmacol. 17, 224–231 (1961).

    PubMed  CAS  Google Scholar 

  • Kloot., W. G. van der: Picrotoxin and the inhibitory system of crayfish muscle. In: Inhibition in the nervous system and gamma-aminobutyric acid, ed. E. Roberts. Oxford-New York: Pergamon Press 1960.

    Google Scholar 

  • Koketsu, K.: Intracellular slow potential of dorsal root fibers. Amer. J. Physiol. 184, 338–344 (1956a).

    PubMed  CAS  Google Scholar 

  • —Intracellular potential changes of primary afferent nerve fibers in spinal cords of cats. J. Neurophysiol. 19, 375–392 (1956b).

    PubMed  CAS  Google Scholar 

  • — Karczmar, G., Kitamura, R.: Acetylcholine depolarization of the dorsal root nerve terminals in the amphibian spinal cord. Int. J. Neuropharmacol. 8, 329–336 (1969).

    PubMed  CAS  Google Scholar 

  • Kostyuk, P. G.: Site of origin of electronic potentials in spinal roots during muscle nerve stimulation. Sechenow physiol. J. U.S.S.R. 42, 800–811 (1956).

    Google Scholar 

  • —Presynaptic and postsynaptic changes produced in spinal neurons by an afferent volley from visceral afferents. In: Structure and function of inhibitory neuronal mechanisms, ed. C. von Euler, S. Skoglund, U. Söderberg, p. 239–248. Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • — Preobrazhensky, N. N.: Supraspinal control of synaptic processes during visceromotor reflexes. Bull. exp. Biol. Med. 62, (No 8), 3–7 (1966).

    Google Scholar 

  • Levitt, M., Carreras, M., Liu, C. N., Chambers, W. W.: Pyramidal and extrapyramidal modulation of somatosensory activity in gracile and cuneate nuclei. Arch. ital. Biol. 102, 197–229 (1964).

    PubMed  CAS  Google Scholar 

  • Liley, A. W.: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.) 134, 427–443 (1956).

    PubMed  CAS  Google Scholar 

  • Llinás, R.: Mechanisms of supraspinal actions upon spinal cord activities. Pharmacological studies on reticular inhibition of alpha extensor motoneurons. J. Neurophysiol. 27, 1127–1137 (1964).

    PubMed  Google Scholar 

  • —A possible mechanism for presynaptic inhibition. In: Structure and function of inhibitory neuronal mechanisms, ed. C. von Euler, S. Skoglund, U. Söderberg, p. 249–250. Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • Lloyd, D. P. C.: A direct central inhibitory action of dromically conducted impulses. J. Neurophysiol. 4, 184–190 (1941).

    Google Scholar 

  • —Facilitation and inhibition of spinal motoneurones. J. Neurophysiol. 9, 421–438 (1946).

    PubMed  CAS  Google Scholar 

  • —Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J. gen. Physiol. 33, 147–170 (1949).

    PubMed  CAS  Google Scholar 

  • —Electrotonus in dorsal root nerves. Cold Spr. Harb. Symp. quant. Biol. 17, 203–218 (1952).

    CAS  Google Scholar 

  • — McIntyre, A. K.: On the origin of dorsal root potentials. J. gen. Physiol. 32, 409–443 (1949).

    PubMed  CAS  Google Scholar 

  • Lund, S., Lundberg, A., Vyklický, L.: Inhibitory action from the flexor reflex afferents on transmission to Ia afferents. Acta physiol. scand. 64, 345–355 (1965).

    PubMed  CAS  Google Scholar 

  • Lundberg, A.: Integration in the reflex pathway. Nobel Sympos. I: Muscular afferents and motor control (R. Granit, ed.), p. 275–305. Stockholm: Alquist & Wiksell. New York-London-Sydney: J. Wiley & Sons 1966.

    Google Scholar 

  • —The supraspinal control of transmission in spinal reflex pathways. Electroenceph. clin. Neurophysiol., Suppl. 25, 35–46 (1967).

    Google Scholar 

  • — Vyklický, L.: Inhibitory interaction between spinal reflexes to primary afferents. Experientia (Basel) 19, 247 (1963).

    PubMed  CAS  Google Scholar 

  • — —Inhibition of transmission to primary afferents by electrical stimulation of the brain stem. Arch. ital. Biol. 104, 86–97 (1966).

    PubMed  CAS  Google Scholar 

  • Majorossy, K., Rethélyi, M., Szentágothai, J.: The large glomerular synapse of the pulvinar. J. Hirnforsch. 7, 415–432 (1965).

    PubMed  CAS  Google Scholar 

  • Malcolm, J. L.: Some observations on dorsal root potentials. In: The spinal cord. Ciba Foundation Symposium, ed. G. E. W. Wolstenholme, p. 84–91. London: J. & A. Churchill, Ltd. 1953.

    Google Scholar 

  • Mallart, A.: Heterosegmental and heterosensory presynaptic inhibition. Nature (Lond.) 206, 719–720 (1965).

    PubMed  CAS  Google Scholar 

  • Marchiafava, P. L., Pompeiano, O.: Excitability changes of the intrageniculate optic tract fibres produced by electrical stimulation of the vestibular system. Pflügers Arch. ges. Physiol. 290, 275–278 (1966a).

    CAS  Google Scholar 

  • — —Enhanced excitability of intra-geniculate optic tract endings produced by vestibular volleys. Arch. ital. Biol. 104, 459–479 (1966b).

    PubMed  CAS  Google Scholar 

  • Matthews, B. H. C.: Impulses leaving the spinal cord by the dorsal roots. J. Physiol. (Lond.) 81, 29–31 P (1934).

    Google Scholar 

  • McCouch, G. P., Austin, G. M.: Postsynaptic source of dorsal root reflex. J. Neurophysiol. 21, 217–223 (1958).

    PubMed  CAS  Google Scholar 

  • Melzack, R., Wall, P. D.: Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    PubMed  CAS  Google Scholar 

  • Mendell, L. M.: Positive dorsal root potentials produced by stimulation of small diameter muscle afferents. Brain Res. 18, 375–379 (1970).

    PubMed  CAS  Google Scholar 

  • — Wall, P. D.: Presynaptic hyperpolarization: a role for fine afferent fibres. J. Physiol. (Lond.) 172, 274–294 (1964).

    PubMed  CAS  Google Scholar 

  • Miyahara, J. T., Esplin, D. W., Zablocka, B.: Differential effects of depressant drugs on presynaptic inhibition. J. Pharmacol. exp. Ther. 154, 118–127 (1966).

    Google Scholar 

  • Morrison, A. R., Pompeiano, O.: Central depolarization of group Ia afferent fibers during desynchronized sleep. Arch. ital. Biol. 103, 517–537 (1965).

    PubMed  CAS  Google Scholar 

  • — —Depolarization of central terminals of group Ia muscle afferent fibres during desynchronized sleep. Nature (Lond.) 210, 201–202 (1966).

    PubMed  CAS  Google Scholar 

  • Ngai, S. H., Tseng, D. T. G., Wang, S. C.: Effect of diazepam and other central nervous system depressants on spinal reflexes in cats: A study of site of action. J. Pharmacol. exp. Ther. 153, 344–351 (1966).

    CAS  Google Scholar 

  • Nishi, S., Koketsu, K.: Electrical properties and activities of single sympathetic neurons in frogs. J. cell. comp. Physiol. 55, 15–30 (1960).

    PubMed  CAS  Google Scholar 

  • Norton, A. C.: The dorsal column system of the spinal cord (An updated review). Los Angeles: Published by: UCLA Brain Information Service 1969/70.

    Google Scholar 

  • Pappas, G. D., Cohen, E. B., Purpura, D. P.: Electron microscope study of synaptic and other neuronal interrelation in the feline thalamus. 8th Internat. Congr. of Anatomists, Wiesbaden, 8–13 August 1965. Stuttgart: Georg Thieme 1965.

    Google Scholar 

  • Pecci-Saavedra, J., Wilson, P. D., Doty, R. W.: Presynaptic inhibition in primate lateral geniculate nucleus. Nature (Lond.) 210, 740–742 (1966).

    PubMed  CAS  Google Scholar 

  • Peters, A., Palay, S. L.: The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J. Anat. (Lond.) 100, 451–486 (1966).

    PubMed  CAS  Google Scholar 

  • Phillis, J. W.: Assay methods for transmitter substances of the central nervous system. Ph.D. Thesis, Australian National University, Canberra (1960).

    Google Scholar 

  • — Tebēcis, A. K.: The effects of topically applied cholinomimetic drugs on the isolated spinal cord of the toad. Comp. Biochem. Physiol. 23, 541–552 (1967).

    PubMed  CAS  Google Scholar 

  • — —Prostaglandins and toad spinal cord responses. Nature (Lond.) 217, 1076–1077 (1968).

    PubMed  CAS  Google Scholar 

  • Pixner, D. B.: The effect of some drugs upon synaptic transmission in the isolated spinal cord of the frog. J. Physiol. (Lond.) 189, 15P (1966).

    Google Scholar 

  • Poritsky, R.: Two and three dimensional ultrastructure of boutons and glial cells on the motoneuronal surface in the cat spinal cord. J. comp. Neurol. 135, 423–452 (1969).

    PubMed  CAS  Google Scholar 

  • Potter, D. D.: The chemistry of inhibition in crustaceans with special reference to gamma-aminobutyric acid. In: Structure and function of inhibitory neuronal mechanisms, ed. C. von Euler, S. Skoglund, U. Söderberg, p. 359–370. Oxford: Pergamon Press 1968.

    Google Scholar 

  • Rall, W.: Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962).

    PubMed  CAS  Google Scholar 

  • —Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural theory and modeling, ed. R. F. Reiss, p. 73–97. Stanford: University Press 1964.

    Google Scholar 

  • Ralston, H. J.: The organization of the substantia gelationsa Rolandi in the cat lumbosacral cord. Z. Zellforsch. 57, 1–23 (1965).

    Google Scholar 

  • Renshaw, B.: Influence of discharge of motoneurones upon excitation of neighbouring motoneurones. J. Neurophysiol. 4, 167–183 (1941).

    Google Scholar 

  • —Reflex discharge in branches of the crural nerve. J. Neurophysiol. 5, 487–498 (1942).

    Google Scholar 

  • Réthelyi, M.: Ultrastructural synaptology of Clarke’s column. Exp. Brain Res. 11, 159–174 (1970).

    PubMed  Google Scholar 

  • — Szentágothai, J.: The large synaptic complexes of the substantia gelatinosa. Exp. Brain Res. 7, 258–274 (1969).

    PubMed  Google Scholar 

  • Rexed, B.: The cytoarchitectonic organization of the spinal cord in the cat. J. comp. Neurol. 96, 415–496 (1952).

    Google Scholar 

  • —A cytoarchitectonic atlas of the spinal cord. J. comp. Neurol. 100, 297–379 (1954).

    PubMed  CAS  Google Scholar 

  • Richens, A.: The action of general anaesthetic agents on root responses of the frog isolated spinal cord. Brit. J. Pharmacol. 36, 294–311 (1969).

    CAS  Google Scholar 

  • Robbins, J., Kloot, W. G. van der: The effect of picrotoxin on peripheral inhibition in the crayfish. J. Physiol. (Lond.) 143, 541–552 (1958).

    PubMed  CAS  Google Scholar 

  • Rosén, I.: Afferent connexions to group I activated cells in the main cuneat nucleus of the cat. J. Physiol. (Lond.) 205, 209–236 (1969).

    PubMed  Google Scholar 

  • Rowe, M. J.: Reduction of response variability in the somatic sensory system by conditioning inputs. Brain Res. 22, 417–420 (1970).

    PubMed  CAS  Google Scholar 

  • — Carmody, J. J.: Afferent inhibition over the response range of secondary trigeminal neurons. Brain Res. 18, 371–374 (1970).

    PubMed  CAS  Google Scholar 

  • Rudomin, P.: Pharmacological evidence for the existence of interneurons mediating primary afferent depolarization in the solitary tract nucleus of the cat. Brain Res. 2, 181–183 (1966).

    PubMed  CAS  Google Scholar 

  • —Primary afferent depolarization produced by vagal visceral afferents. Experientia (Basel) 23, 117–119 (1967a).

    PubMed  CAS  Google Scholar 

  • —Presynaptic inhibition induced by vagal afferent volleys. J. Neurophysiol. 30, 964–981 (1967b).

    PubMed  CAS  Google Scholar 

  • Rudomin, P.: Excitability changes of superior laryngeal, vagal and depressor afferent terminals produced by stimulation of the solitary tract nucleus. Exp. Brain Res. 6, 156–170 (1968).

    PubMed  CAS  Google Scholar 

  • Dutton, H.: Effects of presynaptic and postsynaptic inhibition on the variability of the monosynaptic reflex. Nature (Lond.) 216, 292–293 (1967).

    PubMed  CAS  Google Scholar 

  • — —The effects of primary afferent depolarization on excitability fluctuations of Ia terminals within the motor nucleus. Experientia (Basel) 24, 48–50 (1968).

    PubMed  CAS  Google Scholar 

  • — —Effects of conditioning afferent volleys on variability of monosynaptic responses of extensor motoneurones. J. Neurophysiol. 32, 140–157 (1969a).

    PubMed  CAS  Google Scholar 

  • — —Effects of muscle and cutaneous afferent nerve volleys on excitability fluctuations of Ia terminals. J. Neurophysiol. 32, 158–169 (1969b).

    PubMed  CAS  Google Scholar 

  • — — Munoz-Martinez, J.: Changes in correlation between monosynaptic reflexes produced by conditioning afferent volleys. J. Neurophysiol. 32, 759–772 (1969).

    PubMed  CAS  Google Scholar 

  • — Munoz-Martinez, J.: A tetrodotoxin-resistant primary afferent depolarization. Exp. Neurol. 25, 106–115 (1969).

    PubMed  CAS  Google Scholar 

  • Sauerland, E. K., Mizuno, N.: Cortically induced presynaptic inhibition of trigeminal proprioceptive afferents. Brain Res. 13, 556–568 (1969).

    PubMed  CAS  Google Scholar 

  • Scheibel, M. E., Scheibel, A. B.: Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res. 9, 32–58 (1968).

    PubMed  CAS  Google Scholar 

  • — —Terminal patterns in cat spinal cord. III. Primary afferent collaterals. Brain Res. 13, 417–443 (1969).

    PubMed  CAS  Google Scholar 

  • Schmidt, R. F.: Pharmacological studies on the primary afferent depolarization of the toad spinal cord. Pflügers Arch. ges. Physiol. 277, 325–346 (1963).

    CAS  Google Scholar 

  • —The pharmacology of presynaptic inhibition. Progr. Brain Res. 12, 119–134 (1964).

    CAS  Google Scholar 

  • —The effect of drugs on the reflex paths to primary afferent fibres. In: Studies in physiology, ed. D. R. Curtis, and A. McIntyre, p. 243–249. Berlin-Heidelberg-New York: Springer 1965a.

    Google Scholar 

  • — Die Wirkung von Diazepam (Valium „Roche“) auf synaptische Funktionen des Rückenmarks. Communicationes, VI. Internat. Congr. Electroenceph. Clin. Neurophysiol., Wien 1965, p. 627–630 (1965b).

    Google Scholar 

  • —Discussion remark on the modification of cutaneous information by presynaptic inhibition. In: Touch, heat and pain, ed. A. V. S. de Reuck, J. Knight, p. 318–322. London: Churchill 1966.

    Google Scholar 

  • —The functional organization of presynaptic inhibition of mechanoreceptor afferents. In: Structure and function of inhibitory neural mechanism, ed. C. von Euler, S. Skoglund u. Söderberg, p. 227–233. Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • — Spinal cord afferents: Functional organisation and inhibitory control. In: The interneuron, ed. M. A. B. Brazier, UCLA Forum in Medical Sciences. Los Angeles, Calif. USA. p. 209–229 (1969).

    Google Scholar 

  • — Senges, J., Zimmermann, M.: Excitability measurements at the central terminals of single mechano-receptor afferents during slow potential changes. Exp. Brain Res. 3, 220–233 (1967a).

    PubMed  CAS  Google Scholar 

  • —Presynaptic depolarization of cutaneous mechano-receptor afferents after mechanical skin stimulation. Exp. Brain Res. 3, 234–247 (1967b).

    PubMed  CAS  Google Scholar 

  • — Trautwein, W., Zimmermann, M.: Dorsal root potentials evoked by natural stimulation of cutaneous afferents. Nature (Lond.) 212, 522–523 (1966).

    PubMed  CAS  Google Scholar 

  • Vogel, M. E., Zimmermann, M.: Langsame Potentiale im Nucleus gracilis der Katze. Pflügers Arch. ges. Physiol. 291, R4 (1966).

    Google Scholar 

  • — — —Die Wirkung von Diazepam auf die präsynaptische Hemmung und andere Rückenmarksreflexe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 258, 69–82 (1967).

    CAS  Google Scholar 

  • — Willis, W. D.: Intracellular recording from motoneurones of the cervical spinal cord of the cat. J. Neurophysiol. 26, 28–43 (1963a).

    PubMed  CAS  Google Scholar 

  • — —Depolarization of central terminals of afferent fibers in the cervical spinal cord of the cat. J. Neurophysiol. 26, 44–60 (1963b).

    PubMed  CAS  Google Scholar 

  • Scibetta, C. J., King, R. B.: Hyperpolarizing influence of trigeminal nucleus caudalis on primary afferent preterminals in trigeminal nucleus oralis. J. Neurophysiol. 32, 229–238 (1969).

    PubMed  CAS  Google Scholar 

  • Selzer, M., Spencer, W. A.: Convergence of visceral and cutaneous afferent pathways in the lumbar spinal cord. Brain Res. 14, 331–348 (1969a).

    PubMed  CAS  Google Scholar 

  • — —Interactions between visceral and cutaneous afferents in the spinal cord: Reciprocal primary afferent fiber depolarization. Brain Res. 14, 349–366 (1969b).

    PubMed  CAS  Google Scholar 

  • Shende, M. C., King, R. B.: Excitability changes of trigeminal primary afferent preterminals in brain-stem nuclear complex of squirrel monkey (Saimiri sciureus). J. Neurophysiol. 30, 949–963 (1967).

    PubMed  CAS  Google Scholar 

  • Skoglund, G. R., Uvnäs, B.: Phenomena in the dorsal root reflex. Acta physiol. scand. 6, 149–159 (1943).

    Google Scholar 

  • Stewart, D. H., Scibetta, C. J., King, R. B.: Presynaptic inhibition in the trigeminal relay nuclei. J. Neurophysiol. 30, 135–153 (1967).

    Google Scholar 

  • Stratten, W. P., Barnes, C. D.: Spinal effect of diazepam. Fed. Proc. 27, 571 (1968).

    Google Scholar 

  • Suzuki, H., Kato, K.: Cortically induced presynaptic inhibition in cats geniculate body. Tohoku J. exp. Med. 86, 277–289 (1965).

    PubMed  CAS  Google Scholar 

  • Szentágothai, J.: Anatomical aspects of junctional transformation. In: Information processing in the nervous system, ed. R. W. Gerad and J. W. Duyff. Vol. 3, Proc. Internat. Union Physiol. Sciences, p. 119–136. Amsterdam: Elsevier, Excerpta Medica Foundation 1962.

    Google Scholar 

  • —The structure of the synapse in the lateral geniculate body. Acta anat. (Basel) 55, 166–185 (1963).

    PubMed  Google Scholar 

  • —Synaptic structure and the concept of presynaptic inhibition. In: Structure and function of inhibitory neuronal mechanisms, p. 15–32, ed. C. v. Euler, S. Skoglund, U. Söderberg. Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  • — Hamori, J., Tömböl, T.: Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res. 2, 283–301 (1966).

    PubMed  Google Scholar 

  • Takagi, S. F.: The slow potential observed in the dorsal column-root preparation. Part I. On the origin of the slow potential in the spinal cord. Jap. J. Physiol. 2, 111–124 (1951).

    CAS  Google Scholar 

  • —The slow potential observed in the dorsal column-root preparation. Part II. The concentration effects of drugs on the slow potential. Jap. J. Physiol. 4, 91–101 (1954).

    CAS  Google Scholar 

  • Takeuchi, A., Takeuchi, N.: Electrical changes in pre-and postsynaptic axons of the giant synapse of Loligo. J. gen. Physiol. 45, 1181–1193 (1962).

    PubMed  CAS  Google Scholar 

  • Tang, A. H.: Dorsal root potentials in the chloralose-anesthetized cat. Exp. Neurol. 25, 393–400 (1969).

    PubMed  CAS  Google Scholar 

  • Tebēcis, A. K.: Effects of histamine on the toad spinal cord. Nature (Lond.) 225, 196–197 (1970).

    PubMed  Google Scholar 

  • —: The effects of topically applied biogenic monoamines on the isolated spinal cord of the toad. Aust. J. exp. Biol. med. Sci. 45, 23–24P (1967).

    Google Scholar 

  • — —Reflex response changes of the toad spinal cord to variations in temperature and pH. Comp. Biochem. Physiol. 25, 1035–1047 (1968).

    PubMed  Google Scholar 

  • — —The use of convulsants in studying possible functions of amino acids in the toad spinal cord. Comp. Biochem. Physiol. 28, 1303–1315 (1969a).

    PubMed  Google Scholar 

  • — —The pharmacology of the isolated toad spinal cord. Experiments in Physiology and Biochemistry 2, 361–395 (1969b).

    Google Scholar 

  • Therman, P. O.: Transmission of impulses through the Burdach nucleus. J. Neurophysiol. 4, 153–166 (1941).

    Google Scholar 

  • Tömböl, T.: Short neurons and their synaptic relations in the specific thalamic nuclei. Brain Res. 3, 307–326 (1967).

    PubMed  Google Scholar 

  • Toennies, J. F.: Reflex discharge from the spinal cord over the dorsal roots. J. Neurophysiol. 1, 378–390 (1938).

    Google Scholar 

  • —Conditioning of afferent impulses by reflex discharge over the dorsal roots. J. Neurophysiol. 2, 515–525 (1939).

    Google Scholar 

  • Trachtenberg, M. C., Pollen, D. A.: Neuroglia: biophysical properties and physiologic function. Science 167, 1248–1252 (1970).

    PubMed  CAS  Google Scholar 

  • Tregear, R. T.: The relation of antidromic impulses in the dorsal root fibres to the dorsal root potential in the frog. J. Physiol. (Lond.) 142, 343–359 (1958).

    PubMed  CAS  Google Scholar 

  • Umrath, K.: Der Erregungsvorgang in den Motoneuronen von Rana esculenta. Pflügers Arch. ges. Physiol. 233, 357–370 (1933).

    Google Scholar 

  • Verhey, B. A., Keulen, L. C. M. van, Voorhoeve, P. E.: An extreme form of presynaptic inhibition by Ia afferents. Acta physiol. pharmacol. neerl. 14, 1 (1966).

    Google Scholar 

  • Voorhoeve, P. E., Verhey, B. A.: Pre-and postsynaptic effects on fusimotor-and alpha motoneurones of the cat upon activation of muscle spindle afferents by succinylcholine. Acta physiol. pharmacol. neerl. 12, 12–22 (1963).

    PubMed  CAS  Google Scholar 

  • Vycklický, L., Rudomin, P., Zajac, F. E., Burke, R. E.: Primary afferent depolarization evoked by a painful stimulus. Science 165, 184–186 (1969).

    Google Scholar 

  • — Tabin, V.: Primary afferent depolarization evoked by adequate stimulation of skin receptors. Physiol. bohemoslov. 15, 89–97 (1966).

    Google Scholar 

  • Walberg, F.: Axoaxonic contacts in the cuneate nucleus, probable basis for presynaptic depolarization. Exp. Neurol. 13, 218–231 (1965).

    PubMed  CAS  Google Scholar 

  • Wall, P. D.: Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. (Lond.) 142, 1–21 (1958).

    PubMed  CAS  Google Scholar 

  • —The origin of a spinal cord slow potential. J. Physiol. (Lond.) 164, 508–526 (1962).

    PubMed  CAS  Google Scholar 

  • —Presynaptic control of impulses at the first central synapse in the cutaneous pathway. In: Progress in brain research, vol. 12, Physiology of spinal neurons, ed. J. C. Eccles and J. P. Schadé. p. 92–118. Amsterdam: Elsevier Publ. Comp. 1964.

    Google Scholar 

  • — Johnson, A. R.: Changes associated with post-tetanic potentiation of a monosynaptic reflex. J. Neurophysiol. 21, 148–158 (1958).

    PubMed  CAS  Google Scholar 

  • — McCulloch, W. S., Lettvin, J. Y., Pitts, W. H.: Factors limiting the maximum impulse transmitting ability of an afferent system of nerve fibres. 3rd London Symp. on Information Theory, p. 329–344. London: Butterworth 1955.

    Google Scholar 

  • Weiss, G. K., Crill, W. E.: Carotid sinus nerve: primary afferent depolarization evoked by hypothalamic stimulation. Brain Res. 16, 269–272 (1969).

    PubMed  CAS  Google Scholar 

  • Wiesendanger, M.: The pyramidal tract. Recent investigations on its morphology and function. Ergebn. Physiol. 61, 72–136 (1969).

    PubMed  CAS  Google Scholar 

  • — Felix, D.: Pyramidal excitation of lemniscal neurons and facilitation of sensory transmission in the spinal trigeminal nucleus of the cat. Exp. Neurol. 25, 1–17 (1969).

    PubMed  CAS  Google Scholar 

  • — Hammer, B., Tarnecki, R.: Corticofugal control of presynaptic inhibition in the spinal trigeminal nucleus of the cat. The effect of pyramidotomy and barbiturates. Schweiz. Arch. Neurol. Neurochir. Psychiat. 100, 255–276 (1967a).

    CAS  Google Scholar 

  • — — —Corticale Beeinflussung der synaptischen übertragung in Trigeminuskern der Katze. Helv. physiol. pharmacol. Acta. 25, CR 237–239 (1967b).

    Google Scholar 

  • Zimmermann, M.: Habilitationsschrift, Med. Fakultät, Universität Heidelberg (1968a).

    Google Scholar 

  • —Dorsal root potentials after C-fiber stimulation. Science 160, 896–898 (1968b).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag

About this paper

Cite this paper

Schmidt, R.F. (1971). Presynaptic inhibition in the vertebrate central nervous system. In: Ergebnisse der Physiologie Reviews of Physiology, Volume 63. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0047741

Download citation

  • DOI: https://doi.org/10.1007/BFb0047741

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05317-0

  • Online ISBN: 978-3-540-36443-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics