Skip to main content

Integrable systems and algebraic curves

  • Conference paper
  • First Online:
Global Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 755))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADLER, M.: Some finite-dimensional systems and their scattering behavior. Comm. Math. Phys. 55 (1977) 195–230.

    Article  MathSciNet  MATH  Google Scholar 

  • _____: Completely integrable systems and symplectic action. J. Math. Phys. (to appear).

    Google Scholar 

  • _____: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation. Inventiones Math. (1979)

    Google Scholar 

  • ADLER, M., and J. MOSER: On a class of polynomials connected with the Korteweg-de Vries equation. Comm. Math. Phys. 61 (1978) 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  • AGRANOVICH, Z., and V. MARCENKO: The Inverse Scattering Theory. Gordon and Breach, New York, 1963.

    Google Scholar 

  • AIRAULT, H., H. P. McKEAN, and J. MOSER: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. CPAM 30 (1977) 95–148.

    MathSciNet  MATH  Google Scholar 

  • AKHIEZER, N.: A continuous analogue of orthogonal polynomials on a system of intervals. Dokl.Akad. Nauk 141 (1961) 263–266; Sov. Math. 2 (1961) 1409–1412.

    MathSciNet  MATH  Google Scholar 

  • ARNOLD, V.: Sur la géométrie différentielle des groupes de Lie de dimension infini et ses spplications à l'hydrodynamique des fluides parfaits. Ann. Inst. Grenoble 16 (1966) 319–361.

    Article  Google Scholar 

  • _____: Mathematical Methods of Classical Mechanics. Nauka, Moscow, 1974; Springer Verlag, New York, 1978.

    Google Scholar 

  • BAKER, H.: Abel's Theorem and the Allied Theory, Including the Theory of the Theta Functions. Cambridge U. Press, Cambridge, 1897.

    MATH  Google Scholar 

  • _____: Note on the foregoing paper "Commutative ordinary differential operators" by J. L. BURCHNALL and T. W. CHAUNDY. Proc. Royal Sco. London 118 (1928) 584–593.

    Article  Google Scholar 

  • BARGMANN, V.: On the connection between phase shifts and scattering potentials. Rev. Mod. Phys.. 21 (1949) 488–493.

    Article  MathSciNet  MATH  Google Scholar 

  • BAUR, L.: Aufstellung eines vollständigen System von Differentialen erster Gattung in einem cubischen Funktionenkörpers. Math. Ann. 46 (1895) 31–61.

    Article  Google Scholar 

  • BLISS, G.: Algebraic Functions. AMS Publ. 16, New York, 1933.

    Google Scholar 

  • BORG, G.: Eine Umkerhrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78 (1945) 1–96.

    Article  MathSciNet  Google Scholar 

  • BOUSSINESQ, J.: Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiqant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 7 (1872) 55–108.

    MathSciNet  Google Scholar 

  • BURCHNELL, J., and T. CHAUNDY: Commutative ordinary differential operators. Proc. London Math. Soc. 21 (1922) 420–440; Proc.Royal Soc. London 118 (1928) 557–583; 134 (1931) 471–485.

    MathSciNet  Google Scholar 

  • BUSLAEV, V., and L. FADDEEV: On trace formulas for singular Sturm-Liouville operators. Dokl. Akad. Nauk. 132 (1960) 13–16.

    MathSciNet  MATH  Google Scholar 

  • CALOGERO, F.: Solution of the n-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12 (1971) 419–436.

    Article  MathSciNet  Google Scholar 

  • CARLEMAN, T.: Sur les fonctions inverses des fonctions entières. Ark. Mat. Astron. Phys. 15 (1927).

    Google Scholar 

  • CHOODNOVSKY, D., and G. CHOODNOVSKY: Seminaire sur les Équations Non-linéaires. Centre de Math., École Poly., Palaisseau, 1977/78.

    Google Scholar 

  • _____: Completely integrable class of mechanical systems connected with the Korteweg-de Vries and multicomponent Schrödinger equations (1). Sem. Diophantienne, École Poly., Palaisseau, 10 June 1978.

    Google Scholar 

  • _____: Multi-dimensional two-particle problem with non-central potential. Sem. Diophantienne, École Poly., 22 Nov. 1978.

    Google Scholar 

  • CHU, F., D. McLAUGHLIN, and A. SCOTT: The soliton: a new concept in applied science. Proc. IEEE 61 (1973) 1443–1483.

    Article  MathSciNet  Google Scholar 

  • DATE, E., and S. TANAKA: Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda Lattice. Progress Theor. Phys. 55 (1976) 457–465.

    Article  MathSciNet  MATH  Google Scholar 

  • DEIFT, P., and E. TRUBOWITZ: Inverse scattering on the line. CPAM (to appear).

    Google Scholar 

  • DIKII, L., and I. M. GELFAND: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Kortewegde Vries equations. Uspekhi Mat. Nauk 30 (1975) 67–100; Russ. Math. Surveys 30 (1975) 77–113.

    MathSciNet  Google Scholar 

  • _____: Fractional powers of operators and Hamiltonian systems. Funkt. Anal. Pril. 10 (1976) 13–29.

    MathSciNet  MATH  Google Scholar 

  • DIRICHLET, P.: Vorlesungen über Zahlentheorie. F. Vieweg, Braunschweig, 1871.

    Google Scholar 

  • DONAGI, R.: Group law on the intersection of two quadrics. (to appear).

    Google Scholar 

  • DUBROVIN, B., and S. NOVIKOV: Periodic and conditionally periodic analogues of multi-soliton solutions of the Korteweg-de Vries equation. Dokl. Akad. Nauk 6 (1974) 2131–2144.

    MathSciNet  Google Scholar 

  • DUBROVIN, B., V. MATVEEV, and S. NOVIKOV. Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties. Uspekhi Mat. Nauk 31 (1976) 55–136; Russ. Math. Surveys 31 (1976) 59–146.

    MathSciNet  MATH  Google Scholar 

  • DYM, H., and H. P. McKEAN: Fourier Series and Integrals. Academic Press, New York, 1972.

    MATH  Google Scholar 

  • DYSON, F.: Fredholm determinants and inverse scattering problems. Comm. Math. Phys. 47 (1976) 171–183.

    Article  MathSciNet  MATH  Google Scholar 

  • EBIN, D., and J. MARSDEN: Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid. BAMS 75 (1969) 962–967, Ann. of Math, 92 (1970) 102–163.

    Article  MathSciNet  MATH  Google Scholar 

  • ESTABROOK, F., and H. WAHLQUIST: Bäcklund transformations for solutions of the Korteweg-de Vries equation. Phys. Rev. Letters 31 (1973) 1386–1390.

    Article  MathSciNet  Google Scholar 

  • _____: Prolongation structures of non-linear evolution equations. J. Math. Phys. 17 (1976) 1–7.

    Article  MATH  Google Scholar 

  • FADDEEV, L.: On the relation between the S-matrix and the potential of the one-dimensional Schrodinger equation. Tr. Mat. Inst. V.A. Steklova 73 (1964) 314–336; TAMS 65 (1966) 139–166.

    MathSciNet  Google Scholar 

  • FADDEEV, L., and V. ZAKHAROV: Korteweg-de Vries equation: a completely integrable Hamiltonian system. Funkt. Anal. Pril. 5 (1971) 280–287.

    MATH  Google Scholar 

  • FAY, J.: Theta Functions on Riemann Surfaces. Lect. Notes in Math. 352, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  • FERMI, E., J. PASTA, and S. ULAM: Studies of non-linear problems. Collected Papers of Enrico Fermi 2, p.978, Chicago, 1965.

    Google Scholar 

  • FLASCHKA, H.: The Toda lattice, (1) and (2). Phys. Rev. 9 (1974) 1924–1925; Prog. Theor. Phys. 51 (1974) 703–706.

    Article  MathSciNet  MATH  Google Scholar 

  • _____: Discrete and periodic illustrations of some aspects of the inverse method. Lect. Notes in Phys. 38 (1975) 441–466.

    Article  MathSciNet  MATH  Google Scholar 

  • FLASCHKA, H., and D. McLAUGHLIN: Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55 (1976) 438.

    Article  MathSciNet  MATH  Google Scholar 

  • FORNBERG, G., and G. WHITHAM: A numerical and theoretical study of certain non-linear wave phenomena. Phil. Trans. Roy. Soc. London 289 (1978) 373–404.

    Article  MathSciNet  MATH  Google Scholar 

  • GARDINER, C.: Korteweg-de Vries equation and generalizations (4). The Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys. 12 (1971) 1548–1557.

    Article  MathSciNet  MATH  Google Scholar 

  • GARDINER, C., J. GREENE, M. KRUSKAL, and R. MIURA: Method for solving the Korteweg-de Vries equation. Phys. Rev. Letters 19 (1967) 1095–1097.

    Article  MATH  Google Scholar 

  • _____: Korteweg-de Vries equation and generalizations (6). Methods for exact solution. CPAM 27 (1974) 97.

    MATH  Google Scholar 

  • GARDINER, C., M. KRUSKAL, and R. MIURA. Korteweg-de Vries equation and generalizations (2). Existence of conservation laws and integrals of the motion. J. Math. Phys. 9 (1968) 1204–1209.

    Article  MATH  Google Scholar 

  • GELFAND, I. M., and B. LEVITAN: On the determination of a differential equation from its spectral function. Izvest. Akad. Nauk 15 (1951) 309–360.

    MathSciNet  Google Scholar 

  • GOLUBEV, V. V.: Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point. Nauka, Moscow, 1953; Monsin, Jerusalem, 1960.

    MATH  Google Scholar 

  • GUILLEMIN, V., and D. KAZHDAN: Spectral rigidity of the Schrödinger operator on certain negatively curved 2-manifolds, (to appear).

    Google Scholar 

  • HENON, M.: Integrals of the Toda lattice. Phys. Rev. 9 (1974) 1421–1423.

    Article  MathSciNet  MATH  Google Scholar 

  • HENSEL, K., and G. LANDSBERG: Theorie der algebraischen Fonktionen einer Variabeln. Teubner, Leipzig, 1902, Chelsea Publ. Co., New York, 1965.

    Google Scholar 

  • HIROTA, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Letters 27 (1971) 1192–1194.

    Article  MATH  Google Scholar 

  • _____: Exact n-solition solution of the wave equation of long waves in shallow water and non-linear lattices. J. Math. Phys. 14 (1973) 810–815.

    Article  MathSciNet  MATH  Google Scholar 

  • _____: Exact n-soliton solutions of a non-linear lumped network equation. J. Phys. Soc. Japan 35 (1973) 286–288.

    Article  Google Scholar 

  • HOCHSTADT, H.: Function-theoretic properties of the discriminant of Hill's equation. Math. Zeit. 82 (1963) 237–242.

    Article  MathSciNet  MATH  Google Scholar 

  • _____: On the determination of Hill's equation from its spectrum. Arch. Rat. Mech. Anal. 19 (1965) 353–362.

    Article  MathSciNet  MATH  Google Scholar 

  • HYMAN, M., appendix to P. LAX: Almost periodic solutions of the KdV equation. SIAM Rev. 18 (1976) 351–375.

    Article  MathSciNet  Google Scholar 

  • INCE, E.: The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60 (1940) 47–63; 83–99.

    Article  MathSciNet  MATH  Google Scholar 

  • ITS, A., and V. MATVEEV: Hill's operator with a finite number of lacunae. Funkt. Anal. Pril. 9 (1975) 69–70.

    Article  MathSciNet  Google Scholar 

  • JACOBI, C.: Gessamelte Werke, Bd. 7, supplement: Vorlesungen über Dynamik. Reimer, Berlin, 1884.

    Google Scholar 

  • KAC, M., and P. van MOERBEKE: On some periodic Toda lattices. PNAS USA 72 (1975) 1627–1629.

    Article  MathSciNet  MATH  Google Scholar 

  • _____ The solution of the periodic Toda lattice. PNAS USA 72 (1975) 2879–2880.

    Article  MATH  Google Scholar 

  • _____: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16 (1975) 160–169.

    Article  MathSciNet  MATH  Google Scholar 

  • KADOMTSEV, B. B., and V. I. PETIASHVILII: On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk 192 (1970) 753–756; Sov. Phys. Dokl. 15 (1970) 539–541.

    Google Scholar 

  • KAY, I., and H. MOSES: Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys. 27 (1956) 1503–1508.

    Article  MathSciNet  MATH  Google Scholar 

  • KAZHDAN, D., B. KOSTANT, and S. STERNBERG: Hamiltonian group actions and dynamical systems of Calogero type. CPAM 31 (1978) 481–508.

    MathSciNet  MATH  Google Scholar 

  • KORTEWEG, D., and G. de VRIES: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39 (1895) 422–443.

    Article  MathSciNet  MATH  Google Scholar 

  • KOSTANT, B.: Whittaker vectors and representation theory. Invent. Math. 48 (1978) 101–104.

    Article  MathSciNet  MATH  Google Scholar 

  • _____: Ann. Math. (to appear).

    Google Scholar 

  • KOVALEVSKAYA, S.: Sur le problème de la rotation d'un corps autour d'un point fixe. Acta Math. 12 (1889) 177–232; Navehnye Raboty, Acad. Sci. USSR, 1948.

    Article  MathSciNet  Google Scholar 

  • KRICHEVER, I. M.: Algebraic-geometric construction of the Zakharov-Shabat equations and their solutions. Dokl. Akad. Nauk 227 (1976) 291–294; Sov. Math. Dokl. 17 (1976) 394–397.

    MATH  Google Scholar 

  • _____: The method of algebraic geometry in the theory of non-linear equations. Uspekhi Mat. Nauk 32 (1977) 183–208.

    MATH  Google Scholar 

  • _____: On rational solutions of the Kadmotsev-Petiashvilii equation and integrable systems of n particles on the line. Funkt. Anal. Pril. 12 (1978) 76–78.

    MATH  Google Scholar 

  • KPUSKAL, M.: Non-linear wave equations. Lect. Notes in Phys. 38 (1975) 310–354.

    Article  Google Scholar 

  • KRUSKAL, M., and N. ZABUSKY: Interactions of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Letters 15 (1965) 240–243.

    MATH  Google Scholar 

  • LAMB, G.: Bäcklund transformations at the turn of the century. Lect. Notes in Math. 515 (1976) 69–79.

    Article  MathSciNet  MATH  Google Scholar 

  • LANG, S.: Division points on curves. Ann. Math. Pure Appl. 70 (1965) 229–234.

    Article  MathSciNet  MATH  Google Scholar 

  • _____: Introduction to Algebraic and Abelian Functions. Addison-Wesley Publ. Co., Reading, 1972.

    MATH  Google Scholar 

  • LAX, P.: Integrals of non-linear equations of evolution and solitary waves. CPAM 21 (1968) 467–490.

    MathSciNet  MATH  Google Scholar 

  • _____: Periodic solutions of the Koretweg-de Vries equation. CPAM 28 (1975) 141–188.

    MathSciNet  Google Scholar 

  • LEVINSON, N.: On the uniqueness of the potential in the Schrödinger equation for a given asymptotic phase. Danske Vid. Selsk. Math. Fys. Medd. 25 (1944) 1–29.

    MathSciNet  Google Scholar 

  • _____: The inverse Sturm-Liouville problem. Math. Tidsskr. (1949) 25–30.

    Google Scholar 

  • _____: Certain explicit relations between phase shift and scattering potential. Phys. Rev. 89 (1953) 755–757.

    Article  MathSciNet  MATH  Google Scholar 

  • MAGNUS, W., and W. WINKLER: Hill's Equation. Interscience-Wiley, New York, 1966.

    MATH  Google Scholar 

  • MANAKOV, S.: On complete integrability and stochastization in discrete dynamical systems. Z. Eksp. Teor. Fiz. 67 (1974) 543–555.

    MathSciNet  Google Scholar 

  • _____: Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body. Funkt. Anal. Pril. 10 (1976) 93–94.

    MathSciNet  MATH  Google Scholar 

  • MARCENKO, V., and I. V. OSTROVSKII: A characterization of the spectrum of Hill's operator. Sov. Math. Dokl. 16 (1975) 761–765; Mat. Sbornik 139 (1975) 540–606.

    MATH  Google Scholar 

  • MATVEEV, V.: 373, U. Wroclaw, June 1976.

    Google Scholar 

  • McKEAN, H. P.: Selberg's trace formula as applied to a compact Riemann surface. CPAM 25 (1972) 225–246.

    MathSciNet  Google Scholar 

  • _____: Stability for the Korteweg-de Vries equation. CPAM 30 (1977) 347–353.

    MathSciNet  MATH  Google Scholar 

  • _____: Boussinesq's equation as a Hamiltonian System. Adv. Math. Suppl. 3 (1978) 217–226.

    MathSciNet  MATH  Google Scholar 

  • _____: Theta functions, solitons, and singular curves. (to appear).

    Google Scholar 

  • _____: Units of Hill's curves. (to appear).

    Google Scholar 

  • _____: Int. Cong. Math. Helsinki (to appear).

    Google Scholar 

  • _____: Toda lattice, tridiagonal matrices, and singular curves. (to appear).

    Google Scholar 

  • McKEAN, H. P., and P. van MOERBEKE: The spectrum of Hill's equation. Inventiones Math. 30 (1975) 217–274.

    Article  MATH  Google Scholar 

  • _____: Hill and Toda curves. CPAM (to appear).

    Google Scholar 

  • McKEAN, H. P., and E. TRUBOWITZ: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. CPAM 29 (1976) 143–226.

    MathSciNet  MATH  Google Scholar 

  • _____: Hill's surfaces and their theta functions. BAMS (1978)-

    Google Scholar 

  • MEIMAN, N.: The theory of 1-dimensional Schrödinger operators with periodic potential. J. Math. Phys. 18 (1977) 834–848.

    Article  MathSciNet  Google Scholar 

  • MIURA, R.: Korteweg-de Vries equation and generalizations (1). A remarkable explicit non-linear transformation. J. Math. Phys. 9 (1968) 1202–1204.

    Article  MathSciNet  MATH  Google Scholar 

  • _____ ed.: Bäcklund Transformations. Lect. Notes in Math. 515 Springer-Verlag, New York, 1976.

    Google Scholar 

  • MOERBEKE, P. van: The spectrum of Jacobi matrices. Inventiones Math. 37(1976), 45–81.

    Article  MathSciNet  MATH  Google Scholar 

  • MOERBEKE, P. van, and D. MUMFORD: The spectrum of difference operators and the theory of curves. (to appear).

    Google Scholar 

  • MORRIS, H.: Prolongation structures and a generalized inverse scattering problem. J. Math. Phys. 17 (1976) 1867–1869.

    Article  MathSciNet  MATH  Google Scholar 

  • MOSER, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16 (1975) 197–220.

    Article  MathSciNet  MATH  Google Scholar 

  • ____: Finitely many mass points on the line under the influence of an exponential potential — an integrable system. Lect. Notes in Phys. 38 (1975) 467–497.

    Article  MathSciNet  MATH  Google Scholar 

  • ____: Various aspects of integrable Hamiltonian systems. CIME, Bressanone (1978).

    MATH  Google Scholar 

  • MOSER, J., and E. TRUBOWITZ: (to appear).

    Google Scholar 

  • MUMFORD, D.: An algebraic-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations. (to appear).

    Google Scholar 

  • MURRAY, A.: Existence and regularity for solutions of the Korteweg-de Vries equation. Arch. Rat. Mech. (1979)-

    Google Scholar 

  • ____: Solutions of the Korteweg-de Vries equation evolving from a "box" and other irregular initial functions. Duke Math. J. 45 (1978) 149–181.

    Article  MathSciNet  Google Scholar 

  • NEUMANN, C.: De problemate quodam mechanica, quod ad primam integralium ultra-ellipticorum classem revocatur. J. Reine U. Angew Math. 56 (1859) 54–66.

    Google Scholar 

  • NEVANLINNA, F.: Analytic Functions. Springer-Verlag, Berlin, 1970.

    Book  MATH  Google Scholar 

  • NOVIKOV, S.: The periodic problem for the Korteweg-de Vries equation. Funkt. Anal. Pril. 8 (1974) 54–66.

    Article  MathSciNet  MATH  Google Scholar 

  • OLSHANETSKY, M., and A. PERELOMOV: Completely integrable Hamiltonian systems concerned with semi-simple Lie algebras. Inventiones Math. 37 (1976) 93–108.

    Article  MathSciNet  MATH  Google Scholar 

  • POINCARÉ, H.: Les Méthodes Nouvelles de la Méchanique Céleste. Gauthier-Villars Cie., Paris, 1892; Dover Publ. Co., New York, 1957.

    MATH  Google Scholar 

  • RAYLEIGH,: Phil. Mag. 1 (1876) 257.

    Article  Google Scholar 

  • SCHWARTZ, M.: (to appear).

    Google Scholar 

  • SCOTT-RUSSELL, J.: Report on waves. Proc. Roy. Soc. Edinburgh (1844) 319–320.

    Google Scholar 

  • SIEGEL, C. L.: Topics in Complex Function Theory (2). Interscience-Wiley, New York, 1971.

    Google Scholar 

  • SINGER, I. M.: (to apper).

    Google Scholar 

  • STEIMANN, U.: Äquivalente periodische potentiale. Helv. Phys. Acta 30 (1957) 515–520.

    MathSciNet  MATH  Google Scholar 

  • STIELTJES, T. J.: Sur la réduction en fraction continue d'une série procedant suivant les puissances descendentes d'une variable. Oeuvres Complètes 2, 184–206. Noordhoff, Groningen, 1918.

    Google Scholar 

  • SYMES, W.: A Poisson structure on the space of symbols. MRC Technical Summary Report, Madison, Wisc., April 1978.

    Google Scholar 

  • TANAKA, S.: On the n-tuple wave solutions of the Korteweg-de Vries equation. Publ. RIMS Kyoto 8 (1972/73) 419–427.

    Article  MathSciNet  MATH  Google Scholar 

  • ____: Korteweg-de Vries equation: construction of solutions in terms of scattering data. Osaka J. Math. 11 (1974) 49–59.

    MathSciNet  MATH  Google Scholar 

  • TAPPERT, F.: (to apper).

    Google Scholar 

  • THICKSTUN, W.: A system of particles equivalent to solitons. J. Math. Anal. Appl. 55 (1976) 335–346.

    Article  MathSciNet  MATH  Google Scholar 

  • TODA, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Japan 23 (1967) 501–506.

    Article  Google Scholar 

  • ____: Studies on a nonlinear lattice. Ark. for Det Fysiske Sem. Trondheim 2 (1974).

    Google Scholar 

  • TRUBOWITZ, E.: The inverse problem for periodic potentials. CPAM 30 (1977) 321–337.

    MathSciNet  MATH  Google Scholar 

  • WHITHAM, G.: Linear and Nonlinear Waves. Interscience-Wiley, New York, 1974.

    MATH  Google Scholar 

  • ZAKHAROV, V.: On stochastization of one-dimensional chains of nonlinear oscillators. Zh. Eksp. Teor. Fiz. 65 (1973) 219–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miroslav Grmela Jerrold Eldon Marsden

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

McKean, H.P. (1979). Integrable systems and algebraic curves. In: Grmela, M., Marsden, J.E. (eds) Global Analysis. Lecture Notes in Mathematics, vol 755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0069806

Download citation

  • DOI: https://doi.org/10.1007/BFb0069806

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09703-7

  • Online ISBN: 978-3-540-38462-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics