Skip to main content

Statistical mechanics of transport phenomena: Polymeric liquid mixtures

  • Chapter
  • First Online:
Statistical Mechanics Deformation Ultrasonic Spectroscopy

Part of the book series: Advances in Polymer Science ((POLYMER,volume 125))

Abstract

A summary is given of the kinetic theory of flexible macromolecules, represented by bead-spring models of arbitrary connectivity. The formal theory is applicable to polydisperse systems, multicomponent mixtures, dilute or concentrated solutions, and fluids with concentration, temperature, and/or velocity gradients. Formal expressions are given for the momentum-flux (stress) tensor, the mass-flux vector, and the heat-flux vector; these can be combined with stochastic simulations to solve problems in rheology, diffusion, and heat conduction. Care is taken to point out where empiricisms are introduced, so that these can be modified or eliminated in the future. Other topics included are: the equation of change for angular momentum, the elastic terms in the equation of change for energy, the effect of velocity gradients on thermal conduction, the uniqueness of the molecular expression for the stress tensor, the relation between the mass flux and the stress tensor, thermal diffusion, and the Onsager receiprocal relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kramers HA (1944) Physica 11: 1–19

    Article  ADS  CAS  Google Scholar 

  2. Kirkwood JG (1967) Macromolecules. Gordon and Breach, New York

    Google Scholar 

  3. Rouse PE Jr (1953) J Chem Phys 21: 1272–1280

    Article  CAS  Google Scholar 

  4. Zimm BH (1956) J Chem Phys 24: 269–278

    Article  CAS  MathSciNet  Google Scholar 

  5. Curtiss CF, Bird RB, Hassager O (1976) Adv Chem Phys 35: 31–117

    Article  CAS  Google Scholar 

  6. Irving JH, Kirkwood JG (1950) J Chem Phys 18: 817–829

    Article  CAS  MathSciNet  Google Scholar 

  7. Bird RB, Hassager O, Armstrong RC, Curtiss CF (1977) Dynamics of polymeric liquids, Vol. 2. Wiley, New York

    Google Scholar 

  8. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol. 1, 2nd edn, Wiley-Interscience, New York; Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 2, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  9. Curtiss CF, Bird RB (1982) J Chem Phys 74: 2016–2033; Bird RB, Saab HH, Curtiss CF (1982) J Phys Chem 86: 1102–1106 (1982) and J Chem Phys 4747–4757; Saab HH, Bird RB, Curtiss CF (1982) J Chem Phys 77: 4758–4766; Fan XJ, Bird RB (1984) J Non-Newtonian Fluid Mech. 15: 341–373; Curtiss CF, Bird RB (1983) Physica 118A: 191–204

    Article  ADS  Google Scholar 

  10. Schieber JD, Curtiss CF, Bird RB (1986) Ind Eng Chem Fundamentals 25: 471–475; Schieber JD (1987) J Chem Phys 87: 4917–4936; Lodge AS, Schieber JD, Bird RB (1988) 88 4001–4007

    Article  CAS  Google Scholar 

  11. Hassager O (1974) J Chem Phys 60: 2111–2124

    Article  Google Scholar 

  12. Gottlieb M, Bird RB (1976) J Chem Phys 65: 2467–2468; Gottlieb M (1977) Computers in Chem 1: 155–160

    Article  ADS  CAS  Google Scholar 

  13. Van Kampen N (1981) Appl Sci Res 37: 67–75; for a quantum mechanical treatment see Bruch LW, Goebel CJ (1981) J Chem Phys 74: 4040–4047

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Bird RB, Öttinger HC (1992) Ann Rev Phys Chem 43: 371–406

    Article  CAS  Google Scholar 

  15. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena Wiley, New York

    Google Scholar 

  16. Dahler JS, Scriven LE (1961) Nature 192: 36–37 (No. 4797); Dahler JS (1965) chap 15 In: Seeger RJ, Temple G (eds) Research frontiers in fluid dynamics. Wiley-Interscience, New York

    Article  ADS  Google Scholar 

  17. Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New York [Second printing with corrections and added notes]

    Google Scholar 

  18. Curtiss CF (1974) Physical chemistry. Vol VIA, Eyring H, Henderson D, Jost W (eds) Academic Press, New York

    Google Scholar 

  19. Curtiss CF (1992) Theor Chim Acta 82: 75–91

    Article  ADS  CAS  Google Scholar 

  20. Doi M, Edwards SF (1986) Theory of Polymer Dynamics, Oxford Univ Press

    Google Scholar 

  21. Fixman M (1965) J Chem Phys 42: 3831–3837

    Article  CAS  Google Scholar 

  22. Schieber JD, Öttinger HC (1988) J Chem Phys 89: 6972–6981

    Article  ADS  CAS  Google Scholar 

  23. Murphy TJ, Aguirre JL (1972) J Chem Phys 57: 2098–2104

    Article  CAS  Google Scholar 

  24. Szu SC, Hermans JJ (1974) J Polymer Sci 12: 1743–1751

    CAS  Google Scholar 

  25. Curtiss CF (1989) Momentum equilibration in polymeric systems. WIS-TCI-746

    Google Scholar 

  26. Kuhn W (1933) Koll Zeits 62: 269–285

    Article  CAS  Google Scholar 

  27. Giesekus H (1966) Rheol Acta, 5: 26–36; (1982) J Non-Newtonian Fluid Mech. 11: 69–109

    Google Scholar 

  28. Bird RB, DeAguiar JR (1983) J Non-Newtonian Fluid Mech 13: 149–160; DeAguiar JR (1983), J Non-Newtonian Fluid Mech 13: 161–169

    Article  CAS  Google Scholar 

  29. Bird RB, Wiest JM (1985) 29: 519–532

    Google Scholar 

  30. Curtiss CF, Bird RB (1996) Proc Nat Acad Sci 93

    Google Scholar 

  31. Lodge AS, Wu Y (1971) Rheol Acta 10: 539–553

    MATH  CAS  Google Scholar 

  32. van Wiechen PH, Booij HC (1971) J Eng Math 5: 89–98

    Article  Google Scholar 

  33. Öttinger HC (1996) Stochastic processes in polymeric fluids. Springer, Berlin

    MATH  Google Scholar 

  34. Osaki K, Schrag JL (1971) Polymer Journal 2: 541–549; Osaki K, Schrag JL, Ferry JD (1972) Macromolecules 5: 144–147

    Article  Google Scholar 

  35. Lodge TP (1993) J Phys Chem 97: 1480–1487; Schrag JL, Stokich TM, Strand DA, Merchak PA, Landry CJT, Radtke DR, Man VF, Lodge TP, Morris RL, Hermann KC, Amelar S, Eastman CE, Smeltzly MA (1991) J Non-Crystalline Solids 131–133: 537–543; Stokich TM, Merchak PA, Radtke DR, White CC, Woltman GR, Schrag JL (1994) Polymer Preprints 35: 138–139

    Article  CAS  Google Scholar 

  36. Xu Z, de Pablo JJ, manuscript in preparation

    Google Scholar 

  37. Bird RB, Fan, XJ, Curtiss CF (1984) J Non-Newtonian Fluid Mechanics. 15: 85–92

    Article  CAS  Google Scholar 

  38. Lodge AS (1989) J Rheol 32: 93–95; (1989) Rheol Acta 28: 351–362

    Article  Google Scholar 

  39. Bhave AV, Armstrong RC, Brown RA (1991) J Chem Phys 95: 2988–3000

    Article  ADS  CAS  Google Scholar 

  40. El-Kareh AW, Leal LG (1989) J Non-Newtonian Fluid Mechanics, 33: 257–287

    Article  CAS  Google Scholar 

  41. Öttinger HC (1987) J Chem Phys 87: 3156–3165, 6185–6190; (1989) AIChE Journal 35: 279–286

    Article  ADS  Google Scholar 

  42. Öttinger HC (1992) Rheol Acta 31: 14–21

    Article  Google Scholar 

  43. Beris AN, Mavrantzas VG (1994) J Rheol, 38: 1235–1250; Eq. 29

    Article  ADS  CAS  Google Scholar 

  44. Landau L, Lifshitz EM (1959) Fluid Mechanics, Addison-Wesley, Reading, Mass (Chapter 6)

    Google Scholar 

  45. van den Brule BHAA (1989) Rheol Acta 28: 257–266; (1990) 29: 416–422; (1991) A Contribution to the Micro-Rheological Modeling of Transport Properties. Doctoral Dissertation (Twente University)

    Article  Google Scholar 

  46. Bird RB, Curtiss CF (1996) Rheol Acta 35

    Google Scholar 

  47. Piraux L, Ducarme E, Issi J-P, Begin D, Billaud D (1954) Synthetic Metals, 41–43: 129–132

    Google Scholar 

  48. Poulaert B, Chielens J-C, Vandenhaende C, Issi J-P, Legras R (1990) Polymer Comm 31: 148–151

    CAS  Google Scholar 

  49. Sammler RL, Schrag JL (1988) Macromolecules 21: 1132–1140, 3273–3285; (1989) Macromolecules 22: 3435–3442

    Article  CAS  Google Scholar 

  50. Soli AL, Schrag JL (1979) Macromolecules 12: 1159–1163

    Article  CAS  Google Scholar 

  51. Martel CJT, Lodge TP, Dibbs MG, Stokich TM, Sammler RL, Carriere CJ, and Schrag JL (1983) Faraday Symp Chem Soc 18: 173–188

    Article  Google Scholar 

  52. Borgbjerg U, de Pablo JJ, Öttinger HC (1994) J Chem Phys 101: 7144–7152 Borgbjerg U, de Pablo JJ (1995) Macromolecules 28: 4540–4547

    Article  ADS  Google Scholar 

  53. Carl W, de Pablo JJ (1994) Macromolecular Chem, Theory and Simulations 3: 177–184

    Article  CAS  Google Scholar 

  54. Xu Z, de Pablo JJ, Kim S (1994) J Chem Phys 101: 5293–5844; (1995) J Chem Phys 102: 5836–5304

    Article  ADS  CAS  Google Scholar 

  55. Parker EN (1954) Phys Rev. 96: 1686–1689

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  56. Shafer RH, Larkin N, Zimm BH (1974) Biophys Chem 2: 180–184; Shafer RH (1974) Biophys. Chem 2: 185–188; Bird RB (1979) J Non-Newtonian Fluid Mech 5: 1–12

    Article  PubMed  CAS  Google Scholar 

  57. Wiest JM (1995) Chem Engr Sci (in press)

    Google Scholar 

  58. Casas-Vásquez J, Jou D (eds) (1991) Rheological Modelling: Thermodynamical and statistical approaches, Springer, Berlin Heidelberg New York.

    Book  Google Scholar 

  59. Beris AN, Edwards BJ (1994) Thermodynamics of Flowing Systems, Oxford University Press

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Curtiss, C.F., Byron Bird, R. (1996). Statistical mechanics of transport phenomena: Polymeric liquid mixtures. In: Statistical Mechanics Deformation Ultrasonic Spectroscopy. Advances in Polymer Science, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0071155

Download citation

  • DOI: https://doi.org/10.1007/BFb0071155

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60483-9

  • Online ISBN: 978-3-540-47673-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics