Skip to main content

Torsion points on J 0(N) and Galois representations

  • Chapter
  • First Online:
Arithmetic Theory of Elliptic Curves

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1716))

Abstract

Suppose that N is a prime number greater than 19 and that P is a point on the modular curve X 0(N) whose image in J o(N) (under the standard embedding ι: X 0(N)→J 0(N)) has finite order. In [2], Coleman-Kaskel-Ribet conjecture that either P is a hyperelliptic branch point of X 0(N) (so that N∈{23,29,31,41,47,59,71}) or else that ι(P) lies in the cuspidal subgroup C of J 0(N). That article suggests a strategy for the proof: assuming that P is not a hyperelliptic branch point of X 0(N), one should show for each prime number ℓ that the ℓ-primary part of ι(P) lies in C. In [2], the strategy is implemented under a variety of hypotheses but little is proved for the primes ℓ=2 and ℓ=3. Here I prove the desired statement for ℓ=2 whenever N is prime to the discriminant of the ring End J 0(N). This supplementary hypothesis, while annoying, seems to be a mild one; according to W.A. Stein of Berkeley, California, in the range N<5021, it is false only in case N=389.

The author’s research was partially supported by National Science Foundation contract #DMS 96 22801.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Boston, H. W. Lenstra, Jr., and K. A. Ribet, Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 323–328.

    MathSciNet  MATH  Google Scholar 

  2. R. Coleman, B. Kaskel, and K. Ribet, Torsion points on X 0 (N), Contemporary Math. (to appear).

    Google Scholar 

  3. J. A. Csirik, The Galois structure of J 0 (N)[I] (to appear).

    Google Scholar 

  4. P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math., vol. 349, Springer-Verlag, Berlin and New York, 1973, pp. 143–316.

    MATH  Google Scholar 

  5. E. De Shalit, A note on the Shimura subgroup of J 0 (p), Journal of Number Theory 46 (1994), 100–107.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Grothendieck, SGA 7 I, Exposé IX, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin and New York, 1972, pp. 313–523.

    Google Scholar 

  7. B. Kaskel, The adelic representation associated to X 0(37), Ph. D. thesis, UC Berkeley, May, 1996.

    Google Scholar 

  8. S. Lang and H. Trotter, Frobenius distributions in GL2-extensions, Lecture Notes in Math., vol. 504, Springer-Verlag, Berlin and New York, 1976.

    MATH  Google Scholar 

  9. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33–186.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.

    MathSciNet  MATH  Google Scholar 

  12. A. Ogg, Automorphismes de courbes modulaires, Sém. Delange-Pisot-Poitou (1974/1975, exposé 7).

    Google Scholar 

  13. M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), 207–233.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. A. Ribet, On modular representations of arising from modular forms, Invent. Math. 100 (1990), 431–476.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. A. Ribet, Report on mod ℓ representations of , Proceedings of Symposia in Pure Mathematics 55 (2) (1994), 639–676.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. A. Ribet, Images of semistable Galois representations, Pacific Journal of Math. 81 (1997), 277–297.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.

    Article  MathSciNet  Google Scholar 

  18. J.-P. Serre, Sur les représentations modulaires de degré 2 de , Duke Math. J. 54 (1987), 179–230.

    Article  MathSciNet  Google Scholar 

  19. G. Shimura, A reciprocity law in non-solvable extensions, Journal für die reine und angewandte Mathematik 221 (1966), 209–220.

    MathSciNet  MATH  Google Scholar 

  20. J. Tate, The non-existence of certain Galois extensions of Q unramified outside 2, Contemporary Mathematics 174 (1994), 153–156.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math., vol. 83 (second edition), Springer-Verlag, Berlin-Heidelberg-New York, 1997.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlo Viola

Additional information

To Barry Mazur, for his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Ribet, K.A. (1999). Torsion points on J 0(N) and Galois representations. In: Viola, C. (eds) Arithmetic Theory of Elliptic Curves. Lecture Notes in Mathematics, vol 1716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0093454

Download citation

  • DOI: https://doi.org/10.1007/BFb0093454

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66546-5

  • Online ISBN: 978-3-540-48160-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics