Skip to main content

Modelling the circuitry of the cuneate nucleus

  • Neural Modeling (Biophysical and Structural Models)
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

Abstract

Experimental data recorded in cat in vivo offer a new picture of the cuneate nucleus. Classically defined as a simple relay station, the cuneate nucleus is currently seen as a fundamental stage in somatosensory information processing. Intracellular and extracellular recordings have revealed a complex circuitry established by cuneothalamic cells, interneurons and afferent fibers from the sensorimotor cortex. As a result of electrophysiological work, some circuits have been hypothesized in order to explain the data. In this paper we present a computational model designed and developed in order to test the validity of the proposed circuit in [15]. The results of the computer simulations support the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, P., Eccles, J. C., Schmidt, R. F., Yokota, T.: Depolarization of Presynaptic Fibers in the Cuneate Nucleus. Journal of Neurophysiology. Vol. 27 (1964) 92–106

    Google Scholar 

  2. Berkley, Karen J., Badell, Richard J., Blomqvist, A., Bull, M.: Output Systems of the Dorsal Column Nuclei in the cat. Brain Research Review. Vol. 11 (1986) 199–225

    Article  Google Scholar 

  3. Canedo, A.: Primary motor cortex influences on the descending and ascending systems. Progress in Neurobiology. Vol. 51 (1997) 287–335

    Article  Google Scholar 

  4. Canedo, A., Martinez, L., Mariño, J.: Tonic and bursting activity in the cuneate nucleus of the chloralose anesthetized cat. Neuroscience. Vol. 84 2 (1998) 603–617

    Article  Google Scholar 

  5. Coulter, D. A., Huguenard, R. J., Prince, D. A.: Calcium currents in rat thalamocortical relay neuron kinetic properties of the transient low-threshold current. Journal of Physiology (London). Vol. 414 (1989) 587–694

    Article  Google Scholar 

  6. Fyffe, Robert E., Cheema, Surindar S., Rustioni, A.: Intracelular Staining Study of the Feline Cuneate Nucleus. I. Terminal Patterns of Primary Afferent Fibers. Journal of Neurophysiology. Vol. 56 5 (1986) 1268–1283

    Google Scholar 

  7. Hines, M.: A program for simulation of nerve equations with branching geometries. International Journal of Biomedical Computation. Vol. 24 (1989) 55–68

    Article  Google Scholar 

  8. Hodgkin, A., Huxley, A., Katz, B.: Measurements of current-voltage relations in the membrane of the giant axon of Loligo. Journal of Physiology (London). Vol. 116 (1952) 424–448

    Article  Google Scholar 

  9. Huguenard, J. R., Coulter, D. A., Prince, D. A.: Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J. of Neurophysiology. Vol. 59 (1988) 778–795

    Google Scholar 

  10. Huguenard, J. R., Coulter, D. A., Prince, D. A.: A Fast Transient Potassium Current in Thalamic Relay Neurons: Kinetics of Activation and Inactivation. Journal of Neurophysiology. Vol. 66 (1991) 1304–1315

    Google Scholar 

  11. Jack, J. J. B., Redman, S. J.: The propagation of transient potentials in some linear cable structures. J. of Physiology (London). Vol. 215 (1971) 283–320

    Article  Google Scholar 

  12. Kay, A. R., Wong, R. K. S.: Calcium current activation kinetics in isolated pyramidal neurons of the CA1 region of the mature guinea-pig hippocampus. Journal of Physiology (London). Vol. 392 (1987) 603–616

    Article  Google Scholar 

  13. Kuypers, H. G. J. M., Tuerk, J. D.: The distribution of the cortical fibers within the nucleic cuneatus and gracilis in the cat. J. Anat. Lond. Vol. 98 (1964) 143–162

    Google Scholar 

  14. Mariño, J., Martínez, L., Canedo, A.: Coupled slow and delta oscillations between cuneothalamic and thalamocortical neurons in the chloralose anesthetized cat. Neuroscience Letters. Vol. 219. (1996) 107–110

    Article  Google Scholar 

  15. Mariño, J., Martínez, L., Canedo, A.: Sensorimotor integration at the dorsal column nuclei. News In Physiological Sciences. (In Press)

    Google Scholar 

  16. McCormick, David A., Huguenard, John R.: A Model of the Electrophysiological Properties of Thalamocortical Relay Neurons. Journal of Neurophysiology. Vol. 68. 4 (1992) 1384–1400

    Google Scholar 

  17. McCormick, D. A., Pape, H. C.: Properties of a hyperpolarization-activated cation current and its rate in rhythmic oscillations in thalamic relay neurons. Journal of Physiology (London). Vol. 431. (1990) 291–318

    Article  Google Scholar 

  18. Rall, W.: Theoretical significance of dendritic tree for input-output relation. In Neural Theory and Modeling. Stanford University Press, Stanford. Reiss, R. F. (Ed.) (1964) 73–97

    Google Scholar 

  19. Rustioni, A. and Weinberg, R. J.: The somatosensory system. In Handbook of Chemical Neuroanatomy. Vol. 7: Integrated systems of the Cns, part II. Elsevier: Amsterdam. Björklund, A., Hökfelt, T., and Swanson, L. W. (Eds.) (1989) 219–320

    Google Scholar 

  20. Sánchez E., Barro, S., Canedo, A., Martìnez, L., Mariño, J.: Computational simulation of the principal cuneate projection neuron. Workshop Principles of Neural Integration: Instituto Juan March de Estudios e Investigaciones (1997). Madrid.

    Google Scholar 

  21. Sánchez, E., Barro, S., Canedo, A., Martìnez L., Mariño, J.: A computational model of cuneate nucleus interneurons. Eur. J. Neurosci. Vol. 10. 10 (1998) 402

    Google Scholar 

  22. Walberg, F.: The fine structure of the cuneate nucleus in normal cats and following interruption of afferent fibres. An electron microscopical study with particular reference to findings made in Glees and Nauta sections. Expl. Brain. Res. Vol. 2. (1966) 107–128

    Article  Google Scholar 

  23. Yamada, Walter M., Koch, C., Adams, P.: Multiple Channels and Calcium Dynamics. In Methods in Neuronal Modeling. MIT Press. Koch, C. and Segev I. (Eds). (1989) 20–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez, E., Barro, S., Mariño, J., Canedo, A., Vázquez, P. (1999). Modelling the circuitry of the cuneate nucleus. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098162

Download citation

  • DOI: https://doi.org/10.1007/BFb0098162

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics